8. Q3
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Use the simple interest formula <code class='latex inline'>\displaystyle I= </code> Prt. Find the amount that needs to be invested at <code class='latex inline'>\displaystyle 8 \% </code> per year for 10 years in order to earn <code class='latex inline'>\displaystyle \$2000 </code> in interest.</p> Similar Question 2 <p>Calculate.</p><p>b) the interest earned in 1 year on <code class='latex inline'> \$ 300 </code> at <code class='latex inline'> 5 \% </code> </p>
Similar Question 3
<p>Calculate.</p><p>a) the interest earned in 1 year on <code class='latex inline'> \$2000 </code> at <code class='latex inline'> 7 \% </code> </p> Similar Questions Learning Path L1 Quick Intro to Factoring Trinomial with Leading a L2 Introduction to Factoring ax^2+bx+c L3 Factoring ax^2+bx+c, ex1 Now You Try <p>a) Rearrange the formula <code class='latex inline'>\displaystyle I = \operatorname{Pr} t </code> to solve for <code class='latex inline'>\displaystyle t </code></p><p>b) Rearrange the formula <code class='latex inline'>\displaystyle I = \operatorname{Pr} t </code> to solve for <code class='latex inline'>\displaystyle r </code></p><p>c) Rearrange the formula <code class='latex inline'>\displaystyle I = \operatorname{Prt} </code> to solve for <code class='latex inline'>\displaystyle P </code></p><p>d) Copy and complete the table.</p><p><code class='latex inline'>\displaystyle \begin{array}{|c|c|c|c|} \hline 1 & \boldsymbol{P} & \boldsymbol{r} & \boldsymbol{t} \\ \hline & 2200 & 0.15 & 6 \\ \hline 240 & 800 & & 3 \\ \hline 625 & & 0.25 & 4 \\ \hline 3300 & 2000 & & 11 \\ \hline 450 & 1800 & 0.05 & \\ \hline 4400 & & 0.04 & 22 \\ \hline & 600 & 0.025 & 30 \\ \hline 522 & 725 & 0.08 & \\ \hline \end{array} </code></p> <p>You deposit$150 in a savings account that earns simple interest at a rate of 5.5% per year. How much interest will you have earned after 4 years?</p>
<p>Calculate.</p><p>b) the interest earned in 1 year on <code class='latex inline'> \$300 </code> at <code class='latex inline'> 5 \% </code> </p> <p>Calculate. </p><p>d) the interest earned in 1 year on <code class='latex inline'> \$ x </code> at <code class='latex inline'> 4 \% </code> </p>
<p>Calculate.</p><p>a) the interest earned in 1 year on <code class='latex inline'> \$2000 </code> at <code class='latex inline'> 7 \% </code> </p> <p>The formula for the amount of simple interest earned on an investment is <code class='latex inline'>\displaystyle I=P r t </code>, where <code class='latex inline'>\displaystyle I </code> is the interest earned, <code class='latex inline'>\displaystyle P </code> is the principal, or amount invested, <code class='latex inline'>\displaystyle r </code> is the interest rate as a decimal, and <code class='latex inline'>\displaystyle t </code> is the time the investment is left in the bank (in years). Find the amount of interest earned on an investment of <code class='latex inline'>\displaystyle \$ 4000 </code> at <code class='latex inline'>\displaystyle 0.85 \% </code> interest after 4 years.</p>
<p>Cleavon has money in an account that earns <code class='latex inline'>\displaystyle 3 \% </code> simple interest. The formula for computing simple interest is <code class='latex inline'>\displaystyle I=P r t </code>, where <code class='latex inline'>\displaystyle I </code> is the interest earned, <code class='latex inline'>\displaystyle P </code> represents the principal that he put into the account, <code class='latex inline'>\displaystyle r </code> is the interest rate (in decimal form), and <code class='latex inline'>\displaystyle t </code> represents time in years.</p><p>a. Cleavon makes a deposit of <code class='latex inline'>\displaystyle \$2 c </code> and leaves it for 2 years. Write a monomial tha represents the interest earned.</p><p>b. If <code class='latex inline'>\displaystyle c </code> represents a birthday gift of <code class='latex inline'>\displaystyle \$ 250 </code>, how much will Cleavon have in this account after 2 years?</p>
<p>Use the simple interest formula <code class='latex inline'>\displaystyle I= </code> Prt. Find the amount that needs to be invested at <code class='latex inline'>\displaystyle 8 \% </code> per year for 10 years in order to earn <code class='latex inline'>\displaystyle \$2000 </code> in interest.</p> <p>Calculate.</p><p>c) the interest earned in 1 year on <code class='latex inline'> \$ 3500 </code> at <code class='latex inline'> 6 \% </code> </p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.