14. Q14a
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Solve the linear system. Explain why you chose the method that you used. Check each solution.</p><p><code class='latex inline'>\begin{array}{lcl} \dfrac{1}{2}x + y = 4 \\ x + \dfrac{1}{3}y = 2\end{array}</code></p>
Similar Question 2
<p>Solve by elimination.</p><p><code class='latex inline'>\displaystyle 0.2 x-0.3 y=-0.1\\0.5 x-0.4 y=0.8 </code></p>
Similar Question 3
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &0.5x - 0.3 y = 1.5\\ &0.2x -0.1y = 0.7 \\ \end{array} </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Solve by elimination.</p><p><code class='latex inline'>\displaystyle 0.5 x-1.3 y=1.23\\4 x-2 y=0.6 </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'>\displaystyle 0.2 x-0.3 y=-0.1\\0.5 x-0.4 y=0.8 </code></p>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &0.5x - 0.3 y = 1.5\\ &0.2x -0.1y = 0.7 \\ \end{array} </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'>\displaystyle 0.2 x-0.3 y=-0.6\\0.5 x+0.2 y=2.3 </code></p>
<p>To solve the following linear system by elimination, Brent first multiplied each equation by 10. Explain why he did this step. Complete the solution.</p><p><code class='latex inline'> \displaystyle \begin{array}{cccc} &0.3x - 0.5y = 1.2 \\ &0.7x - 0.2y = -0.1 \end{array} </code></p>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &\frac{x}{9} + \frac{y -3}{3} = 1 \\ & \frac{x}{2} - (y + 9) = 0\\ \end{array} </code></p>
<p>Solve each linear system.</p><p><code class='latex inline'> \displaystyle \begin{array}{cccc} &0.2x - 0.3y = 1.3 \\ &0.5x + 0.2y = 2.3 \end{array} </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'> \displaystyle \begin{cases} \frac{4a}{3}- \frac{b}{4} = 6 \\ \\ \frac{5a}{6}+ b = 13 \end{cases} </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'>\displaystyle 1.7 x+3.5 y=0.01\\0.6 x+1.2 y=0 </code></p>
<p> Solve for x and y using the elimination method.</p> <ul> <li><code class='latex inline'>\displaystyle 0.1x + 2y = 1</code></li> <li> <code class='latex inline'>0.5x - 8y = 7</code></li> </ul>
<p>Solve each linear system.</p><p><code class='latex inline'> \displaystyle \begin{array}{cccc} &0.1a - 0.4b = 1.9 \\ &0.4a + 0.5b = -0.8 \end{array} </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'>\displaystyle 0.3 x-0.5 y=1.2\\0.7 x-0.2 y=-0.1 </code></p>
<p> Solve for <code class='latex inline'>x</code> and <code class='latex inline'>y</code> using the elimination method.</p> <ul> <li><code class='latex inline'>\displaystyle \frac{x}{2} + 6y = 4</code></li> <li> <code class='latex inline'>x - 5y = 9</code></li> </ul>
<p>Solve the linear system. Explain why you chose the method that you used. Check each solution.</p><p><code class='latex inline'>\begin{array}{lcl} \dfrac{1}{2}x + y = 4 \\ x + \dfrac{1}{3}y = 2\end{array}</code></p>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &\frac{1}{2}x - 5 y = 7\\ &3x + \frac{y}{2} = \frac{23}{2} \\ \end{array} </code></p>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &0.5x - 0.3 y = 1.5\\ &0.2x -0.1y = 0.7 \\ \end{array} </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.