20. Q20c
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p> Solve for x and y using the elimination method.</p> <ul> <li><code class='latex inline'>\displaystyle x - y = 2x + 3</code></li> <li> <code class='latex inline'>x - 2y = 5 - 3(y + 1)</code></li> </ul>
Similar Question 2
<p> Solve for x and y using the elimination method.</p> <ul> <li><code class='latex inline'>\displaystyle x - y = 2x + 3</code></li> <li> <code class='latex inline'>x - 2y = 5 - 3(y + 1)</code></li> </ul>
Similar Question 3
<p>Expand and simplify each equation. Then, solve the linear system.</p><p><code class='latex inline'> \displaystyle \begin{cases} 3(a - 1) - 3(b - 3) = 0 \\ 3(a + 2)-(b - 7) = 20 \end{cases} </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Solve each system using elimination.</p><p><code class='latex inline'>\displaystyle 2 x=5(2-y) </code></p><p><code class='latex inline'>\displaystyle y=3(-x+5) </code></p>
<p> Solve for x and y using the elimination method.</p> <ul> <li><code class='latex inline'>\displaystyle x - y = 2x + 3</code></li> <li> <code class='latex inline'>x - 2y = 5 - 3(y + 1)</code></li> </ul>
<p>Expand and simplify each equation. Then, solve the linear system.</p><p><code class='latex inline'> \displaystyle \begin{cases} 3(a - 1) - 3(b - 3) = 0 \\ 3(a + 2)-(b - 7) = 20 \end{cases} </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'> \displaystyle \begin{cases} \frac{t - 5}{3} + \frac{w + 1}{2}= 1\\ \frac{t - 1}{5} + \frac{w + 2}{3} = 2 \end{cases} </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'> \displaystyle \begin{cases} \frac{1}{2}m + n = -4\\ \frac{m}{2} -\frac{3n}{2} =1 \end{cases} </code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.