21. Q21
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>If <code class='latex inline'>\displaystyle \frac{p-q}{2} =3 </code> and <code class='latex inline'>rp -rq =12</code>, then <code class='latex inline'>r =</code></p><p>A) -1</p><p>B) 1</p><p>C) 2</p><p>D) 4</p><p>E) It cannot be determined from the given information</p>
Similar Question 2
<p>If <code class='latex inline'>\displaystyle \frac{p-q}{2} =3 </code> and <code class='latex inline'>rp -rq =12</code>, then <code class='latex inline'>r =</code></p><p>A) -1</p><p>B) 1</p><p>C) 2</p><p>D) 4</p><p>E) It cannot be determined from the given information</p>
Similar Question 3
<p>When <code class='latex inline'>15</code> is appended to a list of integers, the mean is increased by <code class='latex inline'>2</code>. When <code class='latex inline'>1</code> is appended to the enlarged list, the mean of the enlarged list is decreased by <code class='latex inline'>1</code>. How many integers were in the original list?</p><img src="/qimages/33772" />
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>If <code class='latex inline'>\displaystyle \frac{p-q}{2} =3 </code> and <code class='latex inline'>rp -rq =12</code>, then <code class='latex inline'>r =</code></p><p>A) -1</p><p>B) 1</p><p>C) 2</p><p>D) 4</p><p>E) It cannot be determined from the given information</p>
<p>a) Solve the following system of equations for x and y:</p><p><code class='latex inline'> \begin{array}{lllll} &x + 3y &= a \\ &2x + 2y &= b \\ \end{array} </code></p><p>b) Explain why this system of equations will always be consistent, irrespective of the values of <code class='latex inline'>a</code> and <code class='latex inline'>b</code>.</p>
<p>A general system of linear equations is </p> <ul> <li><code class='latex inline'>ax + by = e</code></li> <li><code class='latex inline'>cx + dy = f</code> </li> </ul> <p>where <code class='latex inline'>a, b, c, d, e</code>, and <code class='latex inline'>f</code> are constant values. </p><p><strong>a)</strong> Use elimination to solve for <code class='latex inline'>x</code> and <code class='latex inline'>y</code> in terms of <code class='latex inline'>a,b, c, d, e</code>, and <code class='latex inline'>f</code>. </p><p><strong>b)</strong> Are there any values that <code class='latex inline'>a, b, c, d, e</code>, and <code class='latex inline'>f</code> cannot have? </p>
<p>Consider the linear system</p><p><code class='latex inline'> \displaystyle \begin{cases} ax + by = c\\ dx + ey = f \end{cases} </code> Find a general solution for x and y. State any restrictions on the values of <code class='latex inline'>a, b, c, d, e</code>, and <code class='latex inline'>f</code>.</p>
<p>A general system of linear equations is </p> <ul> <li><code class='latex inline'>ax + by = e</code></li> <li><code class='latex inline'>cx + dy = f</code> </li> </ul> <p>where <code class='latex inline'>a, b, c, d, e</code>, and <code class='latex inline'>f</code> are constant values. </p><p><strong>a)</strong> Use elimination to solve for <code class='latex inline'>x</code> and <code class='latex inline'>y</code> in terms of <code class='latex inline'>a,b, c, d, e</code>, and <code class='latex inline'>f</code>. </p><p><strong>b)</strong> Are there any values that <code class='latex inline'>a, b, c, d, e</code>, and <code class='latex inline'>f</code> cannot have? </p>
<p>Solve the system of equations.</p><p><code class='latex inline'> \displaystyle \begin{cases} x + 3y -z = -14\\ 7x + 6y + z = 1\\ 4x - 2y - 5z = 11 \end{cases} </code></p>
<p>When <code class='latex inline'>15</code> is appended to a list of integers, the mean is increased by <code class='latex inline'>2</code>. When <code class='latex inline'>1</code> is appended to the enlarged list, the mean of the enlarged list is decreased by <code class='latex inline'>1</code>. How many integers were in the original list?</p><img src="/qimages/33772" />
<p>Solve the system <code class='latex inline'>2xy + 3 = 4y</code> and <code class='latex inline'>3xy + 2 = 5y</code>. </p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.