3. Q3b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>To eliminate x from each linear system in question 4, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>? </p><p> <code class='latex inline'>4x - y = 5 </code> --<strong>1</strong> and <code class='latex inline'>-5x + 2y = -1</code> --<strong>2</strong></p>
Similar Question 2
<p>Describe how you would eliminate the variable x from the system of equations in </p><p><code class='latex inline'> 4x + y = 5</code> and <code class='latex inline'>3x + y = 7</code></p>
Similar Question 3
<p>To eliminate y from each linear system, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>?</p><p><code class='latex inline'> 9x - 4y = 10</code> --<strong>1</strong> and <code class='latex inline'>3x + 2y = 10</code> --<strong>2</strong></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 3x -2y = 5\\ 2x + 3y = 12 \end{cases} </code></p>
<p>Solve each system of linear equations by elimination. Check your answers.</p><p><code class='latex inline'> \displaystyle \begin{cases} 2u + 5v = 46\\ 3u - 2v = 12 \end{cases} </code></p>
<p>For each linear system, state whether you would add or subtract to eliminate one of the variables without using multiplication.</p><p><code class='latex inline'> 4x - 3y = 6</code> and <code class='latex inline'>4x + 7y = 9</code></p>
<p>Use the method of elimination to solve each linear system. </p><p><code class='latex inline'> \displaystyle 3x + 2y = 19, 5x - 2y = 5 </code></p>
<p>To eliminate x from each linear system in question 4, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>?</p><p> <code class='latex inline'> 4x + 3y = 12</code> --<strong>1</strong> and <code class='latex inline'>-2x + 5y = 7</code> --<strong>2</strong></p>
<p>Solve each system of equations by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 5 x+2 y=-11 </code></p><p><code class='latex inline'>\displaystyle 3 x+2 y=-9 </code></p>
<p>State the method you would use to solve each system. Explain why you would choose each method.</p><p><code class='latex inline'>\displaystyle 6 x=5 y-1 </code></p><p><code class='latex inline'>\displaystyle 5 x=4 y-1 </code></p>
<p> Solve for <code class='latex inline'>x</code> and <code class='latex inline'>y</code> using the elimination method.</p> <ul> <li><code class='latex inline'>\displaystyle 3x - 2y = 2</code></li> <li> <code class='latex inline'>6x + y = 12</code></li> </ul>
<p>Describe how you would eliminate the variable x from the system of equations in </p><p><code class='latex inline'> 4x + y = 5</code> and <code class='latex inline'>3x + y = 7</code></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 38=2 x-5 y </code></p><p><code class='latex inline'>\displaystyle 75=7 x-3 y </code></p>
<p>Solve the equation and verify your solution.</p><p><code class='latex inline'> x - y = 2</code> and <code class='latex inline'>2x + 3y = 19</code></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 3h - 4k = 5\\ 5h + 3k = -11 \end{cases} </code></p>
<p>Solve using the method of elimination.</p><p><code class='latex inline'> \displaystyle \begin{cases} x + y = 2 \\ 3x - y = 2 \end{cases} </code></p>
<p>Find the point of intersection of each pair of lines.</p><p><code class='latex inline'> \displaystyle \begin{cases} 3x + 5y = 12\\ 2x - y = -5 \end{cases} </code></p>
<p>Solve each system of equations by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 2 p+3 q=-1 </code></p><p><code class='latex inline'>\displaystyle 2 p-3 q=-7 </code></p>
<p>Solve the linear system. Explain why you chose the method that you used. Check each solution.</p><p><code class='latex inline'>\begin{array}{lcl} 3x + 2y = 28 \\ 5x - 3y = 15\end{array}</code></p>
<p>Solve each linear system. Check each solution.</p><p><code class='latex inline'>\displaystyle 2 a=3 b+7 </code></p><p><code class='latex inline'>\displaystyle 5 b=2 a-9 </code></p>
<p>Solve using the method of elimination. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 3x + 2y = -1\\ -3x + 4y = 7 \end{cases} </code></p>
<p> Solve for <code class='latex inline'>x</code> and <code class='latex inline'>y</code> using the elimination method.</p> <ul> <li><code class='latex inline'>\displaystyle 3x - 4y = 5</code></li> <li> <code class='latex inline'>x - 2y = 7</code></li> </ul>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &5x - 12 y = 1\\ &13x + 9y = 16\\ \end{array} </code></p>
<p>Solve each system of equations by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 6 y-5 x=-7 </code></p><p><code class='latex inline'>\displaystyle 2 y-5 x=-19 </code></p>
<p>To eliminate x from each linear system in question 4, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>? </p><p> <code class='latex inline'>4x - y = 5 </code> --<strong>1</strong> and <code class='latex inline'>-5x + 2y = -1</code> --<strong>2</strong></p>
<p>Solve each system using any method. Explain why you chose the method you used.</p><p><code class='latex inline'>\displaystyle x+y=1.5 </code></p><p><code class='latex inline'>\displaystyle 2 x+y=1 </code></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 3 c=2-3 d </code></p><p><code class='latex inline'>\displaystyle 5 c=3-2 d </code></p>
<p>Solve the system <code class='latex inline'>2xy + 3 = 4y</code> and <code class='latex inline'>3xy + 2 = 5y</code>. </p>
<p>State the method you would use to solve each system Explain why you would choose each method.</p><p><code class='latex inline'>\displaystyle 87 x+68 y=99 </code></p><p><code class='latex inline'>\displaystyle 64 x-55 y=81 </code></p>
<p>Solve the linear system. Check each solution.</p><p><code class='latex inline'> \displaystyle 4k + 5h = -0.5 </code> and <code class='latex inline'> \displaystyle 3k + 7h = 0.6 </code></p>
<p>Solve each system of equations by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 2 m-3 n=12 </code></p><p><code class='latex inline'>\displaystyle 5 m-3 n=21 </code></p>
<p>Tell whether the system has one solution, infinitely many solutions, or no solution.</p><p><code class='latex inline'>\displaystyle 9 x+8 y=15 </code></p><p><code class='latex inline'>\displaystyle 9 x+8 y=30 </code></p>
<p>For each linear system, state whether you would add or subtract to eliminate one of the variables without using multiplication.</p><p><code class='latex inline'> 4x - 3y = 6</code> and <code class='latex inline'>4x + 7y = 9</code></p>
<p> Find the value of <code class='latex inline'>x + y</code> if</p><p><code class='latex inline'> \begin{array}{lllll} 2x + 3y & = 14 \\ 3x + 2y & = 6 \\ \end{array} </code></p>
<p>Solve the linear system. Explain why you chose the method that you used. Check each solution.</p><p><code class='latex inline'>\begin{array}{lcl} x - y = -1 \\ 2x + y = 4\end{array}</code></p>
<p>Use the method of elimination to solve the linear system. Check the solution.</p><p><code class='latex inline'>\begin{array}{c} 4x-3y=15\\ 4x+3y=5\end{array}</code></p>
<p>Solve the linear system.</p><p><code class='latex inline'>\displaystyle \begin{array}{llllllll} & x + y = 0.7\\ & 5x -4y = -1 \end{array} </code></p>
<p>Find the point of intersection of each pair of lines. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 3x +y = 13\\ 2x + 3y = 18 \end{cases} </code></p>
<p>State the method you would use to solve each system. Explain why you would choose each method.</p><p><code class='latex inline'>\displaystyle 4 x+3 y=15 </code></p><p><code class='latex inline'>\displaystyle x-2 y=1 </code></p>
<p>To eliminate x from each linear system in question 4, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>?</p><p><code class='latex inline'> 9x - 4y = 10</code> --<strong>1</strong> and <code class='latex inline'>3x + 2y = 10</code> --<strong>2</strong></p>
<p>Solve each system by elimination. Check each solution. If there is not exactly one solution, does the system have no solution or infinitely many solutions?</p><p><code class='latex inline'>\displaystyle 4 x-3 y=5 </code></p><p><code class='latex inline'>\displaystyle 8 x-6 y=10 </code></p>
<p>Solve each system of equation by elimination.</p><p><code class='latex inline'>\displaystyle \begin{array}{ll} x + y = 8 \\ -x + y = 6 \end{array} </code></p>
<p>Solve each system of equation by elimination.</p><p><code class='latex inline'>\displaystyle \begin{array}{ll} x + y = 8 \\ x - y = -2 \end{array} </code></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 2 d=10+4 e </code></p><p><code class='latex inline'>\displaystyle 3 d=6 e+15 </code></p>
<p>To eliminate <code class='latex inline'>x</code> from each linear system, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>?</p><p><code class='latex inline'>3x - 2y = -39 </code> --<strong>1</strong> and <code class='latex inline'>x + 3y = 31</code> --<strong>2</strong></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 3x + 5y = 12\\ 2x - y = -5 \end{cases} </code></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 6 x-5 y=-3 </code></p><p><code class='latex inline'>\displaystyle 2 y-9 x=-1 </code></p>
<p>Solve using the method of elimination. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 4x - y = -1\\ -4x - 3y = -19 \end{cases} </code></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 5m + 2n = 5\\ 2m + 3n = 13 \end{cases} </code></p>
<p>Solve each system by elimination. Check each solution. If there is not exactly one solution, does the system have no solution or infinitely many solutions?</p><p><code class='latex inline'>\displaystyle 3 m+4 n=-1 </code></p><p><code class='latex inline'>\displaystyle 4 m-5 n=-22 </code></p>
<p>To eliminate y from each linear system, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>?</p><p><code class='latex inline'> 9x - 4y = 10</code> --<strong>1</strong> and <code class='latex inline'>3x + 2y = 10</code> --<strong>2</strong></p>
<p>Solve by the method of elimination.</p><p><code class='latex inline'>\displaystyle 2 m-3 n=1 </code></p><p><code class='latex inline'>\displaystyle 4 m+2 n=3 </code></p>
<p>Tell whether the system has one solution, infinitely many solutions, or no solution.</p><p><code class='latex inline'>\displaystyle 2 x-5 y=17 </code></p><p><code class='latex inline'>\displaystyle 6 x-15 y=51 </code></p>
<p>For each linear system, state whether you would add or subtract to eliminate one of the variables without using multiplication.</p><p><code class='latex inline'> 4x + y = 5</code> and <code class='latex inline'>3x + y = 7</code></p>
<p>Solve using the method of elimination. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 2x + y = 8\\ 4x - y = 4 \end{cases} </code></p>
<p>Solve using the method of elimination. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 2x + y = -5 \\ -2x + y = -1 \end{cases} </code></p>
<p> Solve for <code class='latex inline'>x</code> and <code class='latex inline'>y</code> using the elimination method.</p> <ul> <li><code class='latex inline'>\displaystyle 3x - 2y = 5</code></li> <li> <code class='latex inline'>x + 3y = -3</code></li> </ul>
<p>State the method you would use to solve each system. Explain why you would choose each method.</p><p><code class='latex inline'>\displaystyle 2 x-5 y=-1 </code></p><p><code class='latex inline'>\displaystyle 3 x+5 y=-14 </code></p>
<p>To eliminate x from each linear system in question 4, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>? </p><p><code class='latex inline'>2x - 3y = -2 </code> --<strong>1</strong> and <code class='latex inline'>3x - y = 0.5</code> --<strong>2</strong></p>
<p>Solve the linear system. Explain why you chose the method that you used. Check each solution.</p><p><code class='latex inline'>\begin{array}{lcl} x + 2y = 3 \\ 3x - y = 1\end{array}</code></p>
<p>Use elimination to solve the linear system.</p><p><code class='latex inline'> \displaystyle \begin{array}{lllll} & x - 3y = 0\\ & 3x - 2y = -7 \\ \end{array} </code></p>
<p>To eliminate x from each linear system in question 4, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>? </p><p><code class='latex inline'>3x - 2y = -39 </code> --<strong>1</strong> and <code class='latex inline'>x + 3y = 31</code> --<strong>2</strong></p>
<p>To eliminate <code class='latex inline'>x</code> from each linear system, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>?</p><p> <code class='latex inline'>5x - y = -3.8 </code> --<strong>1</strong> and <code class='latex inline'>4x + 3y = 7.6</code> --<strong>2</strong></p>
<p>Solve by the method of elimination.</p><p><code class='latex inline'>\displaystyle 4 x+2 y=3 </code></p><p><code class='latex inline'>\displaystyle 3 x-5 y=4 </code></p>
<p>Solve each linear system. Check each solution.</p><p><code class='latex inline'>\displaystyle -3=2 m-3 n </code></p><p><code class='latex inline'>\displaystyle 2 m+n=-15 </code></p>
<p>To eliminate y from each linear system, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong></p><p><code class='latex inline'> 3x -7y = 11</code> --<strong>1</strong> and <code class='latex inline'>5x + 8y = 9</code> --<strong>2</strong></p>
<p>Solve each system of linear equations by elimination. Check your answers.</p><p><code class='latex inline'> \displaystyle \begin{cases} 4x - 9y = 4\\ 6x + 16y = - 13 \end{cases} </code></p>
<p>Solve the linear system. Check each solution.</p><p><code class='latex inline'> \displaystyle 5a + 2b = 5 </code> and <code class='latex inline'> \displaystyle 2a + 3b = 13 </code></p>
<p>For each linear system, state whether you would add or subtract to eliminate one of the variables without using multiplication.</p><p><code class='latex inline'>4x - 5y = 4</code> and <code class='latex inline'>3x + 5y = 10</code></p>
<p>Determine the point of intersection for each pair of lines. Verify your solution. </p><p> <code class='latex inline'> \displaystyle \begin{array}{ccccc} 4x + 7y = 23 \\ 6x - 5y = - 12 \end{array} </code></p>
<p>To eliminate x from each linear system in question 4, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>?</p><p><code class='latex inline'> 3x -7y = 11</code> --<strong>1</strong> and <code class='latex inline'>5x + 8y = 9</code> --<strong>2</strong></p>
<p>Solve each system by elimination. Check each solution. If there is not exactly one solution, does the system have no solution or infinitely many solutions?</p><p><code class='latex inline'>\displaystyle 8 c-3 d=-10 </code></p><p><code class='latex inline'>\displaystyle 2 c-5 d=6 </code></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 3 s+4=-4 t </code></p><p><code class='latex inline'>\displaystyle 7 s+6 t+11=0 </code></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 4 x-5=2 y </code></p><p><code class='latex inline'>\displaystyle 1=5 y-10 x </code></p>
<p>To eliminate x from each linear system in question 4, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>? </p><p> <code class='latex inline'>5x - y = -3.8 </code> --<strong>1</strong> and <code class='latex inline'>4x + 3y = 7.6</code> --<strong>2</strong></p>
<p>Solve each system by elimination. Check each solution. If there is not exactly one solution, does the system have no solution or infinitely many solutions?</p><p><code class='latex inline'>\displaystyle 3 a+2 b=16 </code></p><p><code class='latex inline'>\displaystyle 2 a+3 b=14 </code></p>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &5x - 12 y = 1\\ &13x + 9y = 16\\ \end{array} </code></p>
<p>To eliminate x from each linear system in question 4, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>? </p><p><code class='latex inline'>3x + y = -2 </code> --<strong>1</strong> and <code class='latex inline'>x - y = -6</code> --<strong>2</strong></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 3 a-7 b-13=0 </code></p><p><code class='latex inline'>\displaystyle 4 a-5 b-13=0 </code></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 2x + 3y = 8\\ x - 2y = -3 \end{cases} </code></p>
<p>Solve each linear system with your choice of method.</p><p><code class='latex inline'> \displaystyle x + y = 7 </code> and <code class='latex inline'> \displaystyle x = y + 3 </code></p>
<p>Use the method of elimination to solve each linear system. </p><p><code class='latex inline'> \displaystyle 3x + 2y = 19, 5x - 2y = 5 </code></p>
<p> Solve for <code class='latex inline'>x</code> and <code class='latex inline'>y</code> using the elimination method.</p> <ul> <li><code class='latex inline'>\displaystyle 2x + 5y = -3</code></li> <li> <code class='latex inline'>3x - 2y = 6</code></li> </ul>
<p>What happens when you solve the system <code class='latex inline'>2x + 3y = 6</code> and <code class='latex inline'>6x + 9y = 0</code> by elimination?</p><p>Use a graph in your explanation.</p>
<p>What is the value of the <code class='latex inline'> y </code> -coordinate of the solution of the given system?</p><p><code class='latex inline'>\displaystyle 4 x+3 y=33 </code></p><p><code class='latex inline'>\displaystyle 3 x+2 y=23 </code></p>
<p>Tell whether the system has one solution, infinitely many solutions, or no solution.</p><p><code class='latex inline'>\displaystyle 3 x+4 y=24 </code></p><p><code class='latex inline'>\displaystyle 6 x+8 y=24 </code></p>
<p>To eliminate y from each linear system, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>?</p><p><code class='latex inline'> 4x + 3y = 12</code> --<strong>1</strong> and <code class='latex inline'>-2x + 5y = 7</code> --<strong>2</strong></p>
<p>To eliminate x from each linear system in question 4, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>? </p><p><code class='latex inline'>x + y = -6 </code> --<strong>1</strong> and <code class='latex inline'>2x + 3y = 9</code> --<strong>2</strong></p>
<p>Find the point of intersection of each pair of lines. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 2x + 3y = -18\\ 3x - 5y =11 \end{cases} </code></p>
<p>Use elimination to solve the linear system.</p><p><code class='latex inline'> \displaystyle \begin{array}{lllll} & 3x + 21 = 5y\\ & 4y + 6 = - 9x\\ \end{array} </code></p>
<p>Solve using the method of elimination.</p><p><code class='latex inline'> \displaystyle \begin{cases} 5x + 2y = -11\\ 3x + 2y = - 9 \end{cases} </code></p>
<p>To eliminate y from each linear system, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>?</p><p> <code class='latex inline'> 4x + 2y = 5</code> --<strong>1</strong> and <code class='latex inline'>3x - 4y = 7</code> --<strong>2</strong></p>
<p>Solve each linear system with your choice of method.</p><p><code class='latex inline'> \displaystyle 4x + 3y = -1.9 </code> and <code class='latex inline'> \displaystyle 2x - 7y = 3.3 </code></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 6 x+5 y=22 </code></p><p><code class='latex inline'>\displaystyle 3 y=4 x+36 </code></p>
<p>Solve each system of linear equations by elimination. Check your answers.</p><p><code class='latex inline'> \displaystyle \begin{cases} 2x + 9y = -4\\ 5x - 2y = 39 \end{cases} </code></p>
<p>Solve each system of equations by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 4 a-3 b=-10 </code></p><p><code class='latex inline'>\displaystyle 2 a+3 b=22 </code></p>
<p>State the method you would use to solve each system. Explain why you would choose each method.</p><p><code class='latex inline'>\displaystyle 2 x-5 y=1 </code></p><p><code class='latex inline'>\displaystyle 3 x-2 y=-4 </code></p>
<p>Solve each linear system. Check each solution.</p><p><code class='latex inline'>\displaystyle 4 x+3 y=7 </code></p><p><code class='latex inline'>\displaystyle 2 x+3 y-5=0 </code></p>
<p>Consider the lunar system <code class='latex inline'>2x - 3y = 5</code> and <code class='latex inline'>4x + y = 8</code>.</p><p><strong>(a)</strong> Solve by elimination.</p><p><strong>(b)</strong> Solve by substitution.</p><p><strong>(c)</strong> Which method do you prefer? Why?</p>
<p>For each linear system, state whether you would add or subtract to eliminate one of the variables without using multiplication.</p><p><code class='latex inline'>4x - 5y = 4</code> and <code class='latex inline'>3x + 5y = 10</code></p>
<p>To eliminate x from each linear system in question 4, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>?</p><p><code class='latex inline'> 4x + 2y = 5</code> --<strong>1</strong> and <code class='latex inline'>3x - 4y = 7</code> --<strong>2</strong></p>
<p>Solve each system by elimination. Check each solution. If there is not exactly one solution, does the system have no solution or infinitely many solutions?</p><p><code class='latex inline'>\displaystyle 3 r+2 s=5 </code></p><p><code class='latex inline'>\displaystyle 9 r+6 s=7 </code></p>
<p>Solve each system by elimination. Check each solution. If there is not exactly one solution, does the system have no solution or infinitely many solutions?</p><p><code class='latex inline'>\displaystyle x+2 y=-3 </code></p><p><code class='latex inline'>\displaystyle 2 x+3 y=-4 </code></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 10 x=17-15 y </code></p><p><code class='latex inline'>\displaystyle 15 x=25 y-3 </code></p>
<p>Solve using the method of elimination.</p><p><code class='latex inline'> \displaystyle \begin{cases} x + 3y = 7\\ x + y = 3 \end{cases} </code></p>
<p>To eliminate y from each linear system, by what numbers would you multiply equations <strong>1</strong> and <strong>2</strong>?</p><p><code class='latex inline'> 9x - 4y = 10</code> --<strong>1</strong> and <code class='latex inline'>3x + 2y = 10</code> --<strong>2</strong></p>
<p>Solve each system of linear equations by elimination. Check your answers.</p><p><code class='latex inline'> \displaystyle \begin{cases} 3a - 2b + 4 = 0\\ 2a - 5b - 1 = 0 \end{cases} </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'>\displaystyle 4 x+5 y=-0.5 </code></p><p><code class='latex inline'>\displaystyle 3 x+7 y=0.6 </code></p>
<p>Tell whether the system has one solution, infinitely many solutions, or no solution.</p><p><code class='latex inline'>\displaystyle 5 x-3 y=10 </code></p><p><code class='latex inline'>\displaystyle 10 x+6 y=20 </code></p>
<p>Use elimination to solve the linear system.</p><p><code class='latex inline'> \displaystyle \begin{array}{lllll} & 2x -3y = 13\\ & 5x - y = 13 \\ \end{array} </code></p>
<p>Solve each system of equations by elimination. Check each solution.</p><p><code class='latex inline'>\displaystyle 4 x+9 y=-7 </code></p><p><code class='latex inline'>\displaystyle 4 x+3 y=-13 </code></p>
<p>Find the point of intersection of each pair of lines. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 2a - 3b = -10\\ 4a + b = 1 \end{cases} </code></p>
<p> Solve for <code class='latex inline'>x</code> and <code class='latex inline'>y</code> using the elimination method.</p> <ul> <li><code class='latex inline'>\displaystyle 2x - y = 3</code></li> <li> <code class='latex inline'>3x + y = 2</code></li> </ul>
<p>Solve each system by elimination. Check each solution. If there is not exactly one solution, does the system have no solution or infinitely many solutions?</p><p><code class='latex inline'>\displaystyle 5 p+3 q=-19 </code></p><p><code class='latex inline'>\displaystyle 2 p-5 q=11 </code></p>
<p>Solve the linear system.</p><p><code class='latex inline'> \displaystyle \begin{array}{cccc} &3x - y = 8 \\ &4x - y = -15 \end{array} </code></p>
<p>Solve each system by elimination. Check each solution. If there is not exactly one solution, does the system have no solution or infinitely many solutions?</p><p><code class='latex inline'>\displaystyle 2 x-3 y=2 </code></p><p><code class='latex inline'>\displaystyle 5 x+6 y=5 </code></p>
<p>Solve using the method of elimination.</p><p><code class='latex inline'> \displaystyle \begin{cases} x - y = -1 \\ 3x + y = -7 \end{cases} </code></p>
<p>Solve each linear system. Check each solution.</p><p><code class='latex inline'>\displaystyle 4 c=3 d-8 </code></p><p><code class='latex inline'>\displaystyle 8=d-4 c </code></p>
<p>Find the point of intersection of each pair of lines. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 3x -2y + 2 = 0\\ 7x - 6y + 11 = 0 \end{cases} </code></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 3a - 4b = 10\\ 5a - 12 b = 6 \end{cases} </code></p>
<p>Solve each system of equations by elimination.</p><p><code class='latex inline'>\displaystyle x+3 y=7 </code></p><p><code class='latex inline'>\displaystyle x+y=3 </code></p>
<p>Solve each system by elimination. Check each solution. If there is not exactly one solution, does the system have no solution or infinitely many solutions?</p><p><code class='latex inline'>\displaystyle 4 x+3 y=15 </code></p><p><code class='latex inline'>\displaystyle 8 x-9 y=15 </code></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 4x + 3y = 4 \\ 8x -y =1 \end{cases} </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'>\displaystyle \begin{array}{llllll} &2x + 3y = 4\\ &2x - 3y = 8 \end{array} </code></p>
<p>Find <code class='latex inline'>x</code> and <code class='latex inline'>y</code> such that</p><p><code class='latex inline'>y = -2x + 2</code> and <code class='latex inline'>3x + 2y = 5</code></p>
<p>Find the point of intersection of each pair of lines.</p><p><code class='latex inline'> \displaystyle \begin{cases} x + 2y= 2 \\ 3x + 5y =4 \end{cases} </code></p>
<p>Solve each system of equation by elimination.</p><p><code class='latex inline'>\displaystyle \begin{array}{ll} x - y = 3 \\ x + y = 7 \end{array} </code></p>
<p>Determine the point of intersection for each pair of lines. Verify your solution. </p><p> <code class='latex inline'> \displaystyle \begin{array}{ccccc} 4x + 7y = 23 \\ 6x - 5y = - 12 \end{array} </code></p><p><a href="https://www.youtube.com/watch?v=mrmANOSwHRg&feature=emb_logo">Similar Example</a></p>
<p>Describe how you would eliminate the variable x from the system of equations in </p><p><code class='latex inline'> 4x - 3y = 6</code> and <code class='latex inline'>4x + 7y = 9</code></p>
<p>Use elimination to solve the linear system.</p><p><code class='latex inline'> \displaystyle \begin{array}{lllll} & x - \frac{1}{3}y = - 1\\ & \frac{2}{3}x -\frac{1}{4}y = - 1\\ \end{array} </code></p>
<p>For each linear system, state whether you would add or subtract to eliminate one of the variables without using multiplication.</p><p><code class='latex inline'> 3x -2y = 8</code> and <code class='latex inline'>5x - 2y = 9</code></p>
<p>Solve by elimination. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 5x + 2y = 48\\ x + y = 15 \end{cases} </code></p>
<p>Solve each linear system with your choice of method.</p><p><code class='latex inline'> \displaystyle 5x -4y + 13 = 0 </code> and <code class='latex inline'> \displaystyle 7x -y + 9 = 0 </code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.