3. Q3d
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Find the point of intersection.</p><p><code class='latex inline'>\displaystyle y = x+ 4 </code> and <code class='latex inline'>\displaystyle y =2x- 1 </code></p>
Similar Question 2
<p>Find the point of intersection of the lines <code class='latex inline'>y = 3x - 22</code> and <code class='latex inline'>y = 4x - 29</code>.</p>
Similar Question 3
<p>Find the point of intersection.</p><p><code class='latex inline'>\displaystyle x - 2y = 7 </code> and <code class='latex inline'>\displaystyle 2x -3y =13 </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Find the point of intersection of each pair of lines.</p><p><code class='latex inline'> \displaystyle \begin{cases} 3x + y = 13\\ 2x + 3y = 18 \end{cases} </code></p>
<p>Find the point of intersection of the lines <code class='latex inline'>y = 3x - 22</code> and <code class='latex inline'>y = 4x - 29</code>.</p>
<p>Find the point of intersection.</p><p><code class='latex inline'>\displaystyle y = 2x + 4 </code> and <code class='latex inline'>\displaystyle y = -x + 1 </code></p>
<p>Find the point of intersection.</p><p><code class='latex inline'>\displaystyle y = 3x + 5 </code> and <code class='latex inline'>\displaystyle 2x - y = -6 </code></p>
<p>Find the point of intersection of each pair of lines.</p><p><code class='latex inline'> \displaystyle \begin{cases} 6x + 5y = 12\\ 3x - 4y = 6 \end{cases} </code></p>
<p>Find the point of intersection.</p><p><code class='latex inline'>\displaystyle x - 2y = 7 </code> and <code class='latex inline'>\displaystyle 2x -3y =13 </code></p>
<p>Find the point of intersection.</p><p><code class='latex inline'>\displaystyle y = x+ 4 </code> and <code class='latex inline'>\displaystyle y =2x- 1 </code></p>
<p>Find the point of intersection.</p><p><code class='latex inline'>\displaystyle y = \frac{1}{2}x -5 </code> and <code class='latex inline'>\displaystyle y = -2x + 5 </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.