16. Q16c
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Find the value of x and y which satisfies</p><p><code class='latex inline'>x - y = 9</code> and <code class='latex inline'>y = -x + 3</code></p>
Similar Question 2
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &\frac{x}{9} + \frac{y -3}{3} = 1 \\ & \frac{x}{2} - (y + 9) = 0\\ \end{array} </code></p>
Similar Question 3
<p>Solve for the unknowns.</p><p><code class='latex inline'>\displaystyle \frac{m-3}{5}+\frac{n+2}{4}=1 </code></p><p><code class='latex inline'>\displaystyle \frac{m+4}{3}+\frac{n-3}{2}=2 </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<ol> <li>Solve each system by any method. Check each solution. If there is not exactly one solution, does the system have no solution or infinitely many solutions?</li> </ol> <p><code class='latex inline'>\displaystyle 0.2 x+0.7 y=1.5 </code></p><p><code class='latex inline'>\displaystyle 0.3 x-0.2 y=1 </code></p>
<p>Solve for (x, y)</p><p><code class='latex inline'>\displaystyle \begin{array}{lllll} & \frac{x}{2} - \frac{2y}{3} = \frac{7}{3} \\ & \frac{3x}{2} + 2y = 5 \end{array} </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'>\displaystyle \frac{4 a}{3}-\frac{b}{4}=9\\\frac{5 a}{6}+b=1 </code></p>
<p>Solve for the unknowns.</p><p><code class='latex inline'>\displaystyle \frac{m-3}{5}+\frac{n+2}{4}=1 </code></p><p><code class='latex inline'>\displaystyle \frac{m+4}{3}+\frac{n-3}{2}=2 </code></p>
<ol> <li>Solve each system by any method. Check each solution. If there is not exactly one solution, does the system have no solution or infinitely many solutions?</li> </ol> <p><code class='latex inline'>\displaystyle \frac{x}{5}+\frac{y}{3}=3 </code></p><p><code class='latex inline'>\displaystyle \frac{x}{2}-\frac{y}{12}=2 </code></p>
<p>Solve the linear system. Choose a method and explain why you chose that method. Check the solution.</p><p><code class='latex inline'>\begin{array}{c} 6x-5y=-1\\ 5x-4y=-1 \end{array}</code></p>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &\frac{x}{9} + \frac{y -3}{3} = 1 \\ & \frac{x}{2} - (y + 9) = 0\\ \end{array} </code></p>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &\frac{x}{11} - \frac{y}{8} = -2 \\ &\\ &\frac{x}{2} -\frac{y}{4} = 3\\ \end{array} </code></p>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &\frac{1}{2}x - 5 y = 7\\ &3x + \frac{y}{2} = \frac{23}{2} \\ \end{array} </code></p>
<p>Tell whether the system has one solution, infinitely many solutions, or no solution.</p><p><code class='latex inline'>\displaystyle 4 x-8 y=15\\-5 x+10 y=-30 </code></p>
<p>Find the value of x and y which satisfies</p><p><code class='latex inline'>x - y = 9</code> and <code class='latex inline'>y = -x + 3</code></p>
<p>Graph each system of equations. Then determine whether the system has no solution, one solution, or infinitely many solutions. If the system has one solution, name it.</p><p><code class='latex inline'>6-\frac{3}{8}y=x</code></p><p><code class='latex inline'>\frac{2}{3}x+\frac{1}{4}y=4</code></p>
<p>Use elimination to solve the linear system.</p><p><code class='latex inline'> \displaystyle \begin{array}{lllll} & x - \frac{1}{3}y = - 1\\ & \frac{2}{3}x -\frac{1}{4}y = - 1\\ \end{array} </code></p>
<p>Simplify and then solve each linear system.</p><p><code class='latex inline'>\displaystyle \begin{array}{lllll} &x + y = 40\\ &\frac{x}{20}- \frac{y}{5} =1 \end{array} </code></p>
<p>Solve. Check each solution.</p><p><code class='latex inline'>\displaystyle \frac{x}{3}+\frac{y}{2}=3 </code></p><p><code class='latex inline'>\displaystyle \frac{2 x}{3}-\frac{3 y}{4}=-1 </code></p>
<p>Solve for the unknowns.</p><p><code class='latex inline'>\displaystyle \frac{3 a}{5}-\frac{b}{2}=9 </code></p><p><code class='latex inline'>\displaystyle \frac{3 a}{4}+\frac{b}{3}=17 </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'>\displaystyle \frac{x}{3}+\frac{y}{4}=2 </code></p><p><code class='latex inline'>\displaystyle \frac{2 x}{3}-\frac{y}{2}=0 </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'>\displaystyle x-y=6\\\frac{2 x}{3}+\frac{y}{3}=1 </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'>\displaystyle \frac{1}{3} m-\frac{1}{6} n=\frac{1}{2}\\\frac{m}{5}-\frac{3 n}{10}=\frac{1}{2} </code></p>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &\frac{x}{9} + \frac{y -3}{3} = 1 \\ & \frac{x}{2} - (y + 9) = 0\\ \end{array} </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'>\displaystyle \frac{x}{3}-\frac{y}{2}=-3 </code></p><p><code class='latex inline'>\displaystyle \frac{x}{6}+\frac{y}{5}=3 </code></p>
<p>Solve by elimination.</p><p><code class='latex inline'>\displaystyle \frac{x}{3}-\frac{y}{6}=-\frac{2}{3}\\\frac{x}{12}-\frac{y}{4}=1 \frac{1}{2} </code></p>
<ol> <li>Solve each system by any method. Check each solution. If there is not exactly one solution, does the system have no solution or infinitely many solutions?</li> </ol> <p><code class='latex inline'>\displaystyle \frac{x}{3}+\frac{y}{4}=-1 </code></p><p><code class='latex inline'>\displaystyle 2 x+y=-8 </code></p>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &\frac{x}{11} - \frac{y}{8} = -2 \\ &\\ &\frac{x}{2} -\frac{y}{4} = 3\\ \end{array} </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.