Now You Try

<p>Calculate the slopes of the lines that pass through each of the following pairs of points.</p><p>A(8, 2) and B(1, 9)</p>

<p>Calculate the slopes of the line segments shown below.</p><img src="/qimages/3040" />

<p>Calculate the slope of the line passing through the pair of points.</p><p><code class='latex inline'>I(0, 0)</code> and <code class='latex inline'>J(-3, -5)</code></p>

<p>What is the slope of this roof?</p><img src="/qimages/2741" />

<p> State the slope of the following linear equations. Sketch the line by using the origin as a starting point.</p><p>(a) <code class='latex inline'>y = x</code></p><p>(b) <code class='latex inline'>y = -\frac{4}{3}x </code></p><p>(c) <code class='latex inline'>y = -\frac{6}{5}x</code></p><p>(d) <code class='latex inline'>y = -2x</code></p>

<p>Calculate the slope of the line passing through the pair of points.</p><p><code class='latex inline'>C(8, 9)</code> and <code class='latex inline'>D(-2, -2)</code></p>

<p>Determine the slope. </p><img src="/qimages/2871" />

<p>Kristina is snowboarding down this hill.</p>
<ul>
<li>On which segment will she go fastest? Why?</li>
</ul>
<img src="/qimages/1352" />

<p>Calculate the slopes of the lines that pass through each of the following pairs of points.</p><p>G(-3, 2) and H(-9, -11)</p>

<p>Calculate the slope of each line.</p>
<ul>
<li>The rise is 4 and the run is 5.</li>
</ul>

<p>Determine the slope. </p><img src="/qimages/2868" />

<p>Calculate the slope of each line.</p>
<ul>
<li>The rise is 4 and the run is 5.</li>
</ul>

<p>Bob is snowboarding down the the hill shown below.</p><img src="/qimages/1352" /><p>a) On which segment will he go fastest?</p><p>b) On which segment will he go slowest?</p>

<p>Calculate the slope of the line passing through the pair of points.</p><p><code class='latex inline'>A(3, 8)</code> and <code class='latex inline'>B(5, 7)</code></p>

<p>Calculate the slope of each line.</p>
<ul>
<li>The line passes through points <code class='latex inline'>(2, 7)</code> and <code class='latex inline'>(6, 1)</code>. </li>
</ul>

<p>Determine the slope. </p><img src="/qimages/2867" />

<p>Find the slope for each of the lines in the given figure.</p><img src="/qimages/442" />

<p>Determine two more ordered pairs that lie on each line.</p>
<ul>
<li>The rise is 3, the run is 4, and <code class='latex inline'>(2, -5)</code> is on the line.</li>
</ul>

<p>Find the slope for each of the lines in the given figure.</p><img src="/qimages/439" />

<p>Find the slope for each of the lines in the given figure.</p><img src="/qimages/440" />

<p>Calculate the slope of each line.</p>
<ul>
<li>The first differences are -5 when the change in <code class='latex inline'>x</code> is 1.</li>
</ul>

<p>A quadrilateral has vertices <code class='latex inline'>O(0, 0), P(3, 5), Q(8, 6)</code>, and <code class='latex inline'>R(5, 1)</code>.</p><p><strong>(a)</strong> Determine whether OPQR is a parallelogram.</p><p><strong>(b)</strong> Describe how you could use geometry software to verify your answer to part (a).</p>

<p>For <code class='latex inline'>P(-3, -4), Q(5, 1)</code>, and <code class='latex inline'>R(2, 7)</code>.</p><p>Determine the coordinates of the midpoints of PQ and PR. Label these midpoints S and T.</p><p>Find the slopes of <code class='latex inline'>ST</code> and <code class='latex inline'>QR</code>. Are they parallel?</p>

<p> State the following equation of lines in y-intercept form.</p>
<ul>
<li>The line passes through (3, 0) and (5, 6).</li>
</ul>

<p>Copy and complete the table to identify whether the lines will rise or fall to the right.</p><img src="/qimages/3039" />

<p>Calculate the slope of each line.</p>
<ul>
<li><code class='latex inline'>\Delta y= 8</code> when <code class='latex inline'>\Delta x = 2</code></li>
</ul>

<p>Calculate the slope of the line passing through the pair of points.</p><p><code class='latex inline'>M(0, 4)</code> and <code class='latex inline'>N(-3, 4)</code></p>

<p>Calculate the slope of the line passing through the pair of points.</p><p><code class='latex inline'>P(-2, -1)</code> and <code class='latex inline'>Q(-2, -9)</code></p>

<p>Find the slope for each of the lines in the given figure.</p><img src="/qimages/441" />

<p>Determine the slope. </p><img src="/qimages/2869" />

<p>Determine the slope. </p><img src="/qimages/2870" />

<p>There are three steps from the ground to a front porch 72 cm above the ground, as shown.</p><p><strong>a)</strong> What is the rise of each step?</p><p><strong>b)</strong> The horizontal distance across each step is 25 cm. Determine the length of AB. </p><p><strong>c)</strong> Determine the slope of the handrail.</p><img src="/qimages/1341" />

<p>Calculate the slopes of the lines that pass through each of the following pairs of points.</p><p>C(-1, 2) and D(3, -8)</p>

<p> Determine if points <code class='latex inline'>(3, 1), (4, -1)</code>, and <code class='latex inline'>(7, -8)</code> lie on the same line.</p>

<p>Calculate the slope of the line passing through the pair of points.</p><p><code class='latex inline'>E(-8, 4)</code> and <code class='latex inline'>F(4, -8)</code></p>

<p>Determine the slope. </p><img src="/qimages/2866" />

<p>Calculate the slopes of the lines that pass through each of the following pairs of points.</p><p>E(-1, 5) and F(3, 2)</p>