14. Q14a
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Determine the coordinates of the circumcentre, the point of intersection of the right bisectors of the sides of <code class='latex inline'>\triangle ABC</code> where <code class='latex inline'>A(4, 4), B(8, 0)</code> and <code class='latex inline'>O(0, 0)</code>. </p>
Similar Question 2
<ul> <li>Determine the equations of the right bisectors of the sides of <code class='latex inline'>\triangle OAB</code>.</li> </ul> <img src="/qimages/732" />
Similar Question 3
<p>A telecommunication company wants to build a relay tower that is the same distance from two adjacent towns. On a local map, the towns have coordinates <code class='latex inline'>(2, 6)</code> and <code class='latex inline'>(10, 0)</code>.</p><p> Find an equation for this bisector.</p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Determine an equation for the perpendicular bisector of a line segment with each pair of endpoints.</p><p><code class='latex inline'>C(-2,0)</code> and <code class='latex inline'>D(4,-4)</code></p>
<p>Show that the right bisectors of the sides of <code class='latex inline'>\triangle DEF</code> all intersect at point <code class='latex inline'>C(-4, 4)</code>, the circumcentre of the triangle.</p><img src="/qimages/5016" />
<ul> <li>Determine the equations of the right bisectors of the sides of <code class='latex inline'>\triangle OAB</code>.</li> </ul> <img src="/qimages/732" />
<img src="/qimages/610" /><p> Determine an equation for the right bisector of <code class='latex inline'>BC</code>.</p>
<p>Describe all the points that are the same distance from points <code class='latex inline'>A(-3, -1)</code> and <code class='latex inline'>B(5, 3)</code>.</p>
<img src="/qimages/610" /><p><strong>i)</strong> Is the equation for the right bisector from <code class='latex inline'>BC</code> same as the median from vertex <code class='latex inline'>A</code>?</p><p><strong>ii)</strong> What property must a triangle have if the median to one of its sides coincides with the right bisector of that side.</p>
<p>Determine whether the point <code class='latex inline'>T(2, -1)</code> lies on the right bisector of the line segment with endpoints <code class='latex inline'>U(3, 5)</code> and <code class='latex inline'>V(-3, -1)</code>. </p><p>Explain your reasoning.</p>
<p>a) Draw the triangle with vertices <code class='latex inline'>T(-8, 6), U(2, 10)</code>, and <code class='latex inline'>W(4, -4)</code>.</p><p>b) Draw the median from vertex <code class='latex inline'>U</code>. Then, find an equation for this median.</p><p>c) Draw the altitude from vertex <code class='latex inline'>T</code>. Then, find an equation for this altitude.</p><p>d) Draw the right bisector of <code class='latex inline'>TU</code>. Then, find an equation for this right bisector.</p>
<p>Determine an equation for the right bisector of the line segment with endpoints <code class='latex inline'>P(-5, -2)</code> and <code class='latex inline'>Q(3, 6)</code>.</p>
<p><code class='latex inline'>\triangle LMN</code> has vertices at <code class='latex inline'>L(O, 4), M(-5, 2)</code>, and <code class='latex inline'>N(2, -2)</code>. Determine the equation of the perpendicular bisector that passes through <code class='latex inline'>MN</code>.</p>
<p>A telecommunication company wants to build a relay tower that is the same distance from two adjacent towns. On a local map, the towns have coordinates <code class='latex inline'>(2, 6)</code> and <code class='latex inline'>(10, 0)</code>.</p><p> Find an equation for this bisector.</p>
<p>Determine the coordinates of the circumcentre, the point of intersection of the right bisectors of the sides of <code class='latex inline'>\triangle ABC</code> where <code class='latex inline'>A(4, 4), B(8, 0)</code> and <code class='latex inline'>O(0, 0)</code>. </p>
How did you do?
Found an error or missing video? We'll update it within the hour! 👉
Save videos to My Cheatsheet for later, for easy studying.