8. Q8c
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Find all values of <code class='latex inline'>k</code> so that each trinomial can be factored as a perfect square over the integers.</p><p><code class='latex inline'>4y^4+ky^2z^2+25z^4</code></p>
Similar Question 2
<p>Find the two missing values (<code class='latex inline'>b</code>, <code class='latex inline'>c</code>, and/or <code class='latex inline'>h</code>) in each equation.</p><p><code class='latex inline'>x^2+bx+c = (x-5)^2-32</code></p>
Similar Question 3
<p>Find all values of <code class='latex inline'>k</code> so that each trinomial can be factored as a perfect square over the integers.</p><p><code class='latex inline'>4y^4+ky^2z^2+25z^4</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Find all values of <code class='latex inline'>k</code> so that each trinomial can be factored as a perfect square over the integers.</p><p><code class='latex inline'>81x^4+kx^2+16</code></p>
<p>Determine two values of <code class='latex inline'>h</code> so that each trinomial can be factored over the integers.</p><p><code class='latex inline'>6s^2-hs-12</code></p>
<p>Determine all values of b so that each trinomial is a perfect square.</p><p><code class='latex inline'>9n^2+bnp+49p^2</code></p>
<p>Find the two missing values (<code class='latex inline'>b</code>, <code class='latex inline'>c</code>, and/or <code class='latex inline'>h</code>) in each equation.</p><p><code class='latex inline'>x^2+bx+c = (x-5)^2-32</code></p>
<ol> <li>Communication If it is possible to remove a common factor from the expression <code class='latex inline'>\displaystyle 2 x^{2}+k y+4 </code>, where <code class='latex inline'>\displaystyle k </code> is an integer, what can you state about the possible values of <code class='latex inline'>\displaystyle k </code> ? Explain.</li> </ol>
<p>Find the value of <code class='latex inline'>k</code> so that each trinomial can be factored over the integers.</p><p><code class='latex inline'>\displaystyle 9a^2 -ka + 4 </code></p>
<p>Find the two missing values (<code class='latex inline'>b</code>, <code class='latex inline'>c</code>, and/or <code class='latex inline'>h</code>) in each equation.</p><p><code class='latex inline'>x^2+bx+c = (x+2)^2+3</code></p>
<p>List all values of <code class='latex inline'>k</code> such that each trinomial can be factored over the integers.</p><p><code class='latex inline'> 4x^2 + kx - 9 </code></p>
<p>Determine two values of <code class='latex inline'>h</code> so that each trinomial can be factored over the integers.</p><p><code class='latex inline'>3y^2+hy+16</code></p>
<p>Determine two values of <code class='latex inline'>b</code> so that each expression can be factored.</p><p><code class='latex inline'>x^2+bx-10</code></p>
<p>Determine all values of <code class='latex inline'>b</code> so that each trinomial is a perfect square.</p><p><code class='latex inline'>y^2+by+121</code></p>
<p>Find the value of <code class='latex inline'>k</code> so that each trinomial can be factored over the integers.</p><p><code class='latex inline'>\displaystyle m^2 + km + 10 </code></p>
<p>Find all values of <code class='latex inline'>k</code> so that each trinomial can be factored as a perfect square over the integers.</p><p><code class='latex inline'>4y^4+ky^2z^2+25z^4</code></p>
<p>Determine two values of <code class='latex inline'>b</code> so that each expression can be factored.</p><p><code class='latex inline'>x^2+bx+12</code></p>
<p>Determine all values of <code class='latex inline'>b</code> so that each trinomial is a perfect square.</p><p><code class='latex inline'>x^2+bx+36</code></p>
<p>For what values of <code class='latex inline'>k</code> can the polynomial be factored? Explain.</p><p> <code class='latex inline'>x^2+kx+4</code></p>
<p>Find the two missing values (<code class='latex inline'>b</code>, <code class='latex inline'>c</code>, and/or <code class='latex inline'>h</code>) in each equation.</p><p><code class='latex inline'>x^2+bx+49 = (x+h)^2</code></p>
<p>List all values of <code class='latex inline'>k</code> such that each trinomial can be factored over the integers.</p> <ul> <li><code class='latex inline'>3x^2 + kx - 2 </code></li> </ul>
<p>Determine all values of <code class='latex inline'>k</code> so that each trinomial is a perfect square.</p><p><code class='latex inline'>25y2 + ky + 144</code></p>
<p>Determine two values of <code class='latex inline'>h</code> so that each trinomial can be factored over the integers.</p><p><code class='latex inline'>2x^2+hx+4</code></p>
<p>Determine all values of <code class='latex inline'>k</code> so that each trinomial is a perfect square.</p><p><code class='latex inline'>\displaystyle 36x^2 + kx + 121 </code></p>
<p>Determine two values of <code class='latex inline'>b</code> so that each expression can be factored.</p><p><code class='latex inline'>x^2-bx-8</code></p>
<p>Determine two values of <code class='latex inline'>k</code> so that each expression can be factored.</p><p><code class='latex inline'>x^2+kx+24</code></p>
<p>Determine two values of <code class='latex inline'>h</code> so that each trinomial can be factored over the integers.</p><p><code class='latex inline'>5g^2+hg+12</code></p>
<p>For each expression, name an integer, <code class='latex inline'>k</code>, such that the quadratic trinomial can be factored. </p><p><code class='latex inline'>4x^2+kx-10</code></p>
<p>Determine all values of b so that each trinomial is a perfect square.</p><p><code class='latex inline'>4x^2+bx+25</code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.