9. Q9b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Choose a pair of integers for <code class='latex inline'>b</code> and <code class='latex inline'>c</code> that will make each statement true.</p><p> Neither <code class='latex inline'>x^2+bx+c</code> nor <code class='latex inline'>x^2+cx+b</code> can be factored.</p>
Similar Question 2
<p>Determine two values of <code class='latex inline'>d</code> so that each expression can be factored.</p><p><code class='latex inline'>x^2+10x+d</code></p>
Similar Question 3
<p>Determine the value of <code class='latex inline'>c</code> needed to create a perfect-square trinomial.</p><p> <code class='latex inline'>\displaystyle 2x^2 +12x + c </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Determine all values of <code class='latex inline'>k</code> so that each trinomial is a perfect square.</p><p><code class='latex inline'>\displaystyle 25x^2 -60xy + ky^2 </code></p>
<p>Determine all values of b so that each trinomial is a perfect square.</p><p><code class='latex inline'>w^2+10w+b</code></p>
<p>Determine the value of <code class='latex inline'>c</code> that makes each expression a perfect square.</p><p><code class='latex inline'>x^2-16x+c</code></p>
<p>Determine all values of <code class='latex inline'>c</code> so that each trinomial is a perfect square.</p><p><code class='latex inline'>x^2+16x+c</code></p>
<p>Determine the value of <code class='latex inline'>c</code> needed to create a perfect-square trinomial.</p><p><code class='latex inline'> \displaystyle x^2 - 10x + c </code></p>
<p>Determine two values of <code class='latex inline'>k</code> so that each trinomial can be factored over the integers.</p><p><code class='latex inline'>9x^2+15x+k</code></p>
<p>Determine all values of b so that each trinomial is a perfect square.</p><p><code class='latex inline'>16x^2-88xy+b^2y^2</code></p>
<p>Determine two values of <code class='latex inline'>k</code> so that each trinomial can be factored over the integers.</p><p><code class='latex inline'>3w^2-10w+k</code></p>
<p>Determine all values of <code class='latex inline'>c</code> so that each trinomial is a perfect square.</p><p><code class='latex inline'>z^2+30z+c</code></p>
<p>Determine the value of <code class='latex inline'>c</code> that makes each expression a perfect square.</p><p><code class='latex inline'>x^2-130x+c</code></p>
<p>Determine all values of <code class='latex inline'>c</code> so that each trinomial is a perfect square.</p><p><code class='latex inline'>9y^2-30y+c</code></p>
<p>Explain why it is easier to factor <code class='latex inline'>ax^2+bx+c</code> if <code class='latex inline'>a</code> and <code class='latex inline'>c</code> are prime numbers.</p>
<p>Determine two values of <code class='latex inline'>k</code> so that each trinomial can be factored over the integers.</p><p><code class='latex inline'>5y^2-11y+k</code></p>
<p>Find the 3 values of <code class='latex inline'>k</code> so that it is factorable.</p> <ul> <li><code class='latex inline'> x^2 - 7x + k</code></li> </ul>
<p>Determine two values of <code class='latex inline'>c</code> so that each expression can be factored.</p><p><code class='latex inline'>x^2+2x-c</code></p>
<p>Determine two values of <code class='latex inline'>k</code> so that each trinomial can be factored over the integers.</p><p><code class='latex inline'>4m^2+16m+k</code></p>
<p>For each expression, name an integer, <code class='latex inline'>k</code>, such that the quadratic trinomial can be factored. </p><p><code class='latex inline'>8x^2-14x+k</code></p>
<p>Find the value of <code class='latex inline'>k</code> so the trinomial is a perfect square.</p><p><code class='latex inline'>\displaystyle x^2 - 3x + k </code></p>
<p>Determine the value of <code class='latex inline'>c</code> needed to create a perfect-square trinomial.</p><p> <code class='latex inline'>\displaystyle -3x^2 + 15x + c </code></p>
<p>Determine all values of <code class='latex inline'>k</code> so that each trinomial is a perfect square.</p><p><code class='latex inline'>9x^2 - 42x + k</code></p>
<p>Choose a pair of integers for <code class='latex inline'>b</code> and <code class='latex inline'>c</code> that will make each statement true.</p><p> Both <code class='latex inline'>x^2+bx+c</code> and <code class='latex inline'>x^2+cx+b</code> can be factored.</p>
<p>Find the value of <code class='latex inline'>k</code> so the trinomial is a perfect square.</p><p><code class='latex inline'>\displaystyle x^2 - 2x + k </code></p>
<p>Determine two values of <code class='latex inline'>d</code> so that each expression can be factored.</p><p><code class='latex inline'>x^2+10x+d</code></p>
<p>Find two values of <code class='latex inline'>k</code> so that each trinominal can be factored over the integers. </p><p><code class='latex inline'>36m^2+8m+k</code></p>
<p>Find two values of <code class='latex inline'>k</code> so that each trinominal can be factored over the integers. </p><p>(b) <code class='latex inline'>18y^2-42y+k</code></p><p>(c) <code class='latex inline'>kp^2-72pq+16q^2</code></p>
<p>Determine two values of <code class='latex inline'>c</code> so that each expression can be factored.</p><p><code class='latex inline'>x^2-x+c</code></p>
<p>Determine the value of <code class='latex inline'>c</code> needed to create a perfect-square trinomial.</p><p><code class='latex inline'> \displaystyle x^2 + 8x + c </code></p>
<p>Under what circumstances should you look at pairs of negative factors of the constant term when factoring a trinomial of the form <code class='latex inline'> x^{2}+b x+c ? </code> </p>
<p>Find the value of <code class='latex inline'>k</code> so the trinomial is a perfect square.</p><p><code class='latex inline'>\displaystyle x^2 + 5x + k </code></p>
<p>Determine the value of <code class='latex inline'>c</code> that makes each expression a perfect square.</p><p><code class='latex inline'>x^2+2x+c</code></p>
<p>Determine the value of <code class='latex inline'>c</code> that makes each expression a perfect square.</p><p><code class='latex inline'>x^2+6x+c</code></p>
<p>Determine all values of b so that each trinomial is a perfect square.</p><p><code class='latex inline'>81m^2-90m+b</code></p>
<p>Determine the value of <code class='latex inline'>c</code> needed to create a perfect-square trinomial.</p><p><code class='latex inline'> \displaystyle x^2 - 7x + c </code></p>
<p>Determine the value of <code class='latex inline'>c</code> that makes each expression a perfect square.</p><p><code class='latex inline'>x^2-14x+c</code></p>
<p>Choose a pair of integers for <code class='latex inline'>b</code> and <code class='latex inline'>c</code> that will make each statement true.</p><p> Neither <code class='latex inline'>x^2+bx+c</code> nor <code class='latex inline'>x^2+cx+b</code> can be factored.</p>
<p>For what values of <code class='latex inline'>k</code> can the polynomial be factored? Explain.</p><p><code class='latex inline'>x^2+kx+k</code></p>
<p>Determine the value of <code class='latex inline'>c</code> needed to create a perfect-square trinomial.</p><p> <code class='latex inline'>\displaystyle 0.1x^2 -7x + c </code></p>
<p>Determine the value of <code class='latex inline'>c</code> needed to create a perfect-square trinomial.</p><p><code class='latex inline'> \displaystyle 2x^2 -18x + c </code></p>
<p>Determine all values of <code class='latex inline'>k</code> so that each trinomial is a perfect square.</p><p><code class='latex inline'>\displaystyle 49k^2 -56d + k </code></p>
<p>Determine the value of <code class='latex inline'>c</code> needed to create a perfect-square trinomial.</p><p> <code class='latex inline'>\displaystyle 2x^2 +12x + c </code></p>
<p>For what values of <code class='latex inline'>k</code> can the polynomial be factored? Explain.</p><p><code class='latex inline'>x^2+4x+k</code></p>
<p>Find the 3 values of <code class='latex inline'>k</code> so that it is factorable.</p> <ul> <li><code class='latex inline'>x^2 + 2x + k </code></li> </ul>
<p>Determine the value of <code class='latex inline'>c</code> that makes each expression a perfect square.</p><p><code class='latex inline'>x^2+8x+c</code></p>
<p>Determine the value of <code class='latex inline'>c</code> needed to create a perfect-square trinomial.</p><p><code class='latex inline'> \displaystyle x^2 + 5x + c </code></p>
<p>Find the value of <code class='latex inline'>k</code> so the trinomial is a perfect square.</p><p><code class='latex inline'>\displaystyle x^2 +14x + k </code></p>
<p>Find the value of <code class='latex inline'>k</code> so the trinomial is a perfect square.</p><p><code class='latex inline'>\displaystyle x^2 - 11x + k </code></p>
<p>Find the value of <code class='latex inline'>k</code> so the trinomial is a perfect square.</p><p><code class='latex inline'>\displaystyle x^2 - 10x + k </code></p>
<p>Determine the value of <code class='latex inline'>c</code> needed to create a perfect-square trinomial.</p><p>a) <code class='latex inline'>\displaystyle x^2 + 8x + c </code></p><p>b) <code class='latex inline'>\displaystyle x^2 - 16x + c </code></p><p>c) <code class='latex inline'>\displaystyle x^2 + 19x + c </code></p>
<p>Choose a pair of integers for <code class='latex inline'>b</code> and <code class='latex inline'>c</code> that will make each statement true.</p><p> <code class='latex inline'>x^2+bx+c</code> can be factored, but <code class='latex inline'>x^2+cx+b</code> cannot.</p>
<p>Determine the value of <code class='latex inline'>c</code> needed to create a perfect-square trinomial.</p><p><code class='latex inline'> \displaystyle -4x^2 + 24x + c </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.