2. Q2e
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Find the x-intercepts.</p><p><code class='latex inline'>y=12x^2+9x-3</code></p>
Similar Question 2
<p>Find the <code class='latex inline'>x</code>-intercepts.</p><p><code class='latex inline'>y=3x^2-13x+4</code></p>
Similar Question 3
<p>Find the x-intercepts.</p><p><code class='latex inline'>y=15x^2-11x+2</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Find the <code class='latex inline'>x</code>-intercepts.</p><p><code class='latex inline'>y=x^2-11x+28</code></p>
<p>Find the x-intercepts and the vertex of each parabola. Then, sketch its graph.</p><p><code class='latex inline'>y=x^2-4</code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts and the vertex of each parabola. Then, sketch its graph.</p><p><code class='latex inline'>y=x^2-9</code></p>
<p>Find the x-intercepts.</p><p><code class='latex inline'>y=x^2-9x-22</code></p>
<p>Describe two ways in which the functions <code class='latex inline'>f(x) = 2x^2 - 4x</code> and <code class='latex inline'>g(x) = - (x -1)^2 + 2</code> are alike, and two ways in which they are different. </p>
<p>Find the <code class='latex inline'>x</code>-intercepts and the vertex of each parabola. Then, sketch its graph.</p><p><code class='latex inline'>y=x^2+9x+14</code></p>
<p>Graph each function.</p><p><code class='latex inline'>\displaystyle y=x^{2}-6 x-9 </code></p>
<ul> <li>i) determine the coordinates of two points on the graph that are the same distance from the axis of symmetry</li> <li>ii) determine the equation of the axis of symmetry </li> <li>iii) determine the coordinates of the vertex</li> <li>iv) write the relation in vertex form</li> </ul> <p><code class='latex inline'>y=x^2+5x</code></p>
<p>Find the x-intercepts.</p><p><code class='latex inline'>y=x^2-12x+32</code></p>
<p>Find the x-intercepts and the vertex of each parabola. Then, sketch its graph.</p><p><code class='latex inline'>y=-x^2+4x+21</code></p>
<p>Find the x-intercepts.</p><p><code class='latex inline'>y=15x^2-11x+2</code></p>
<p>For the quadratic relation,</p> <ul> <li>i) use partial factoring to determine two points that are the same distance from the axis of symmetry</li> <li>ii) determine the coordinates of the vertex</li> <li>iii) express the relation in vertex form</li> <li>iv) sketch the graph</li> </ul> <p><code class='latex inline'>y=x^2-4x-11</code></p>
<p>Find the x-intercepts and the vertex of each parabola. Then, sketch its graph.</p><p><code class='latex inline'>y=x^2+8x+15</code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts, the vertex, and the equation of the axis of symmetry of each quadratic relation. Then, sketch the parabola.</p><p> <code class='latex inline'>y=x^2+10x+25</code></p>
<p>Find the x-intercepts and the vertex of each parabola. Then, sketch its graph.</p><p><code class='latex inline'>y=x^2+6x</code></p>
<p>Find the x-intercepts.</p><p><code class='latex inline'>y=12x^2+9x-3</code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts, the vertex, and the equation of the axis of symmetry of each quadratic relation. Then, sketch the parabola.</p><p> <code class='latex inline'>y=5x^2-14x-3</code></p>
<p>A parabola has equation <code class='latex inline'>y=x^2+2x-8</code>.</p><p>a) Factor the right side of the equation.</p><p>b) Identify the x-intercepts of the parabola.</p><p>c) Find the equation of the axis of symmetry, find the vertex, and draw the graph.</p>
<p>Find the zeros and the vertex of each parabola. Then, sketch its graph. Check your results with a graphing calculator.</p><p><code class='latex inline'>y=-3x^2+11x+4</code></p>
<p>Find the zeros and the vertex of each parabola. Then, sketch its graph. Check your results with a graphing calculator.</p><p><code class='latex inline'>y=2x^2+7x+3</code></p>
<p>Find the x-intercepts and the vertex of each parabola. Then, sketch its graph.</p><p><code class='latex inline'>y=-x^2-2x+8</code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts, the vertex, and the equation of the axis of symmetry of each quadratic relation. Then, sketch the parabola.</p><p><code class='latex inline'>y=2x^2-5x-12</code></p>
<p>Find the x-intercepts.</p><p><code class='latex inline'>y=6x^2-17x+12</code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts.</p><p><code class='latex inline'>y=x^2+5x+6</code></p>
<p>Determine the exact values of the x-intercepts of each quadratic function.</p><p><code class='latex inline'>f(x) = 6x^2 + 3x -2</code></p>
<p>Find the zeros and the vertex of each parabola. Then, sketch its graph. Check your results with a graphing calculator.</p><p><code class='latex inline'>y=-6x^2-x+15</code></p>
<p>Find the zeros and the vertex of each parabola. Then, sketch its graph. Check your results with a graphing calculator.</p><p><code class='latex inline'>y=12x^2-16x+5</code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts.</p><p><code class='latex inline'>y=x^2+9x</code></p>
<p>Find the x-intercepts and the vertex of each parabola. Then, sketch its graph.</p><p><code class='latex inline'>y=-x^2+25</code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts and the vertex of each parabola. Then, sketch its graph. <code class='latex inline'>\displaystyle y=x^{2}-6 x+8 </code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts.</p><p><code class='latex inline'>y=8x^2-6x</code></p>
<p>Find the zeros and the vertex of each parabola. Then, sketch its graph. Check your results with a graphing calculator.</p><p> <code class='latex inline'>y=-8x^2-13x+6</code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts.</p><p><code class='latex inline'>y=3x^2-13x+4</code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts.</p><p> <code class='latex inline'>y=6x^2-11x-7</code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts.</p><p><code class='latex inline'>y=x^2+5x-24</code></p>
<ul> <li>i) determine the coordinates of two points on the graph that are the same distance from the axis of symmetry</li> <li>ii) determine the equation of the axis of symmetry </li> <li>iii) determine the coordinates of the vertex</li> <li>iv) write the relation in vertex form</li> </ul> <p><code class='latex inline'>y=x^2-11x+21</code></p>
<p>Find the x-intercepts.</p><p><code class='latex inline'>y=x^2+7x-18</code></p>
<p>The underside of a bridge is an arch that can be approximated by the relation <code class='latex inline'>y = -0.1x^2 + 10</code>, where <code class='latex inline'>y</code> is the height, in metres, above the ground and x is the width, in metres, from the centre of the bridge.</p><p>(a) Graph the quadratic relation.</p><p>(b) Describe the shape of the arch.</p><p>(c) How tall and wide is the arch?</p>
<p>Find the <code class='latex inline'>x</code>-intercepts and the vertex of each parabola. Then, sketch its graph.</p><p><code class='latex inline'>y=-x^2-4x+5</code></p>
<p>Find the zeros and the vertex of each parabola. Then, sketch its graph. Check your results with a graphing calculator.</p><p><code class='latex inline'>y=10x^2+23x+12</code></p>
<p>Find the x-intercepts.</p><p><code class='latex inline'>y=12x^2-11x+2</code></p>
<p>Determine the exact values of the x-intercepts of each quadratic function.</p><p><code class='latex inline'>f(x) = \frac{1}{4}x^2 - 2x + 4</code></p>
<p>What point do the parabolas <code class='latex inline'>f(x) = -2x^2 + 3x - 7</code> and <code class='latex inline'>g(x) = 5x^2 + 3x - 7</code> have in common?</p>
<p>Find the x-intercepts.</p><p><code class='latex inline'>y=x^2+6x</code></p>
<p>Find the x-intercepts.</p><p><code class='latex inline'>y=3x^2+8x+5</code></p>
<p>Find the x-intercepts and the vertex of each parabola. Then, sketch its graph.</p><p><code class='latex inline'>y=x^2-8x</code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts and the vertex of each parabola. Then, sketch its graph.</p><p><code class='latex inline'>y=16-x^2</code></p>
<p>Find the x-intercepts and the vertex of each parabola. Then, sketch its graph.</p><p><code class='latex inline'>y=x^2-10x+24</code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts.</p><p><code class='latex inline'>y=4x^2-20x+25</code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts and the vertex of each parabola. Then, sketch its graph.</p><p><code class='latex inline'>\displaystyle y=-x^{2}-5 x </code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts and the vertex of each parabola. Then, sketch its graph.</p><p> <code class='latex inline'>y=-x^2+10x-9</code></p>
<p>Find the x-intercepts.</p><p><code class='latex inline'>y=x^2+8x+12</code></p>
<p>Find the zeros and the vertex of each parabola. Then, sketch its graph. Check your results with a graphing calculator.</p><p> <code class='latex inline'>y=2x^2+15x+7</code></p>
<p>Find the <code class='latex inline'>x</code>-intercepts.</p><p><code class='latex inline'>y=4x^2+20x+9</code></p>
<p>Without graphing, determine the number of x-intercepts that the relation has.</p><p><code class='latex inline'>\displaystyle y = -1.4x^2 -4x - 5.4 </code></p>
<p>A parabola is defined by the equation <code class='latex inline'>y = 5x^2 -15x</code>. Explain how you would determine the coordinates of the vertex of the parabola, without using a table of values or graphing technology.</p>
<p>Find the x-intercepts.</p><p><code class='latex inline'>y=x^2-11x</code></p>
<p>Find the x-intercepts.</p><p><code class='latex inline'>y=5x^2-3x-8</code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.