1. Q1b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Solve for <code class='latex inline'>y</code> in terms of <code class='latex inline'>x</code>.</p><p><code class='latex inline'>-2x - 3y =12</code></p>
Similar Question 2
<p>Solve the relation or formula for the variable indicated:</p><p><code class='latex inline'>I = prt</code>; solve for <code class='latex inline'>r</code></p>
Similar Question 3
<p>Solve the relation or formula for the variable indicated:</p><p><code class='latex inline'>2a - 5b =12</code>; solve for <code class='latex inline'>a</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Solve the relation or formula for the variable indicated:</p><p><code class='latex inline'>I = prt</code>; solve for <code class='latex inline'>r</code></p>
<p>Solve for <code class='latex inline'>y</code> in terms of <code class='latex inline'>x</code>.</p><p><code class='latex inline'>2y = 8 -4x</code></p>
<p>Write a formula for h in terms of the base, b and the area, <code class='latex inline'>A</code> when <code class='latex inline'>A = \frac{1}{2}bh</code>.</p><img src="/qimages/1362" />
<p>In each set of equations, identify the equation that is not equivalent to the others.</p><p><code class='latex inline'>4m - 3n +2 = 4</code>; <code class='latex inline'>3n = 4m + 2</code>; <code class='latex inline'>4m = 3n -2</code>; and <code class='latex inline'>3n - 4m =2</code></p>
<p>Solve for the variable indicated.</p><p><code class='latex inline'>2x + 5y = -10</code>; solve for <code class='latex inline'>y</code>.</p>
<p>Solve the relation or formula for the variable indicated:</p><p><code class='latex inline'>C = 2\pi r</code>; solve for <code class='latex inline'>r</code>.</p>
<p>Isolate the indicated variable. </p><p><code class='latex inline'>\displaystyle 2x - y = 12</code>, <code class='latex inline'>y</code></p>
<p>Solve for the variable indicated.</p><p><code class='latex inline'>3x + y = 5</code>, solve for <code class='latex inline'>x</code>.</p>
<p>Solve for <code class='latex inline'>y</code> in terms of <code class='latex inline'>x</code>.</p><p><code class='latex inline'>\frac{x}{4} + \frac{y}{2} =2</code></p>
<p>Solve each equation for the variable indicated.</p><p><code class='latex inline'>V =\pi r^2h; h</code></p>
<p>Solve each equation for x.</p><p><code class='latex inline'>\displaystyle x+3 y=8 </code></p>
<p>Solve for <code class='latex inline'>y</code> in terms of <code class='latex inline'>x</code>.</p><p><code class='latex inline'> \displaystyle \frac{7}{5}y +\frac{2}{3}x =\frac{11}{13}</code></p>
<p>Solve for <code class='latex inline'>y</code> in terms of <code class='latex inline'>x</code>.</p><p><code class='latex inline'>\displaystyle \frac{4}{5} = \frac{2}{3}x + 1\frac{1}{2}y</code></p>
<p>Solve each equation for the given variable.</p><p><code class='latex inline'>a - 2b = -10</code> for <code class='latex inline'>b</code></p>
<p>Solve the relation or formula for the variable indicated:</p><p><code class='latex inline'>0.35m + 2.4n = 9</code>; solve for <code class='latex inline'>n</code></p>
<p>The number of hot dogs, <code class='latex inline'>n</code>, sold by Wayne’s Wiener World on a given day is modeled by <code class='latex inline'>n = 500 - 100p</code>, where <code class='latex inline'>p</code> is the price, in dollars.</p><p>Solve this equation for <code class='latex inline'>p</code>.</p>
<p>In each set of equations, identify the equation that is not equivalent to the others.</p><p><code class='latex inline'>2a - b = 4; 2a=b +4; a = \frac{b}{2} +2</code>; and <code class='latex inline'>b = 2a +4</code></p>
<p>Solve for the indicated variable. </p><p><code class='latex inline'> \displaystyle 0.3x - 0.3y = 1.8 </code>, <code class='latex inline'>x</code></p>
<p>Ben has <code class='latex inline'>\$42.50</code> in quarters and dimes. </p><p><code class='latex inline'>25q + 10d = 4250</code> relates number of quarters to dimes when <code class='latex inline'>q</code> is number of quarters and <code class='latex inline'>d</code> is number of dimes.</p><p> Write an equation to express the number of quarters in terms of the number of dimes.</p>
<p>Solve for the indicated variable. </p><p> <code class='latex inline'> \displaystyle 6r + 3s = 9 </code>, <code class='latex inline'>r</code></p>
<p>The formula for determining the surface area of a cylinder is <code class='latex inline'>SA = 2\pi r^2 + 2\pi r h</code>.</p><p>Solve for <code class='latex inline'>r</code> in terms of the other variables. </p>
<p>Solve each equation for the given variable.</p><p><code class='latex inline'>-2x + 5y = 12</code> for <code class='latex inline'>y</code></p>
<p>Solve each equation or formula for the specified variable.</p><p><code class='latex inline'>\displaystyle E=m c^{2} </code>, for <code class='latex inline'>\displaystyle m </code></p>
<p>Determine the height of the triangle if the area is <code class='latex inline'>55 cm^2</code> and the base is 4 cm using <code class='latex inline'>A = \frac{1}{2}bh</code>. </p><img src="/qimages/1362" />
<p>Solve each equation for the given variable.</p><p><code class='latex inline'>mx + 2nx = p</code> for <code class='latex inline'>x</code></p>
<p>Solve the relation or formula for the variable indicated:</p><p><code class='latex inline'>2a - 5b =12</code>; solve for <code class='latex inline'>a</code></p>
<p>Solve for <code class='latex inline'>y</code> in terms of <code class='latex inline'>x</code>.</p><p><code class='latex inline'>3(y - 2) + 2x = 8</code></p>
<p>Isolate y.</p><p><code class='latex inline'> \displaystyle \frac{8 - 14x}{3} = 14y + 2 </code></p>
<p>Start with the relation <code class='latex inline'>2x -5y = 20</code></p><p>Graph the relation using <code class='latex inline'>y</code> as the independent variable.</p>
<p>Solve the relation or formula for the variable indicated:</p><p><code class='latex inline'>\dfrac{1}{2}p -\dfrac{2}{3}q = \dfrac{1}{4}</code>; solve for <code class='latex inline'>p</code></p>
<p>Ben has <code class='latex inline'>\$42.50</code> in quarters and dimes. </p><p><code class='latex inline'>25q + 10d = 4250</code> relates number of quarters to dimes when <code class='latex inline'>q</code> is number of quarters and <code class='latex inline'>d</code> is number of dimes.</p><p>Write an equation to express the number of dimes in terms of the number of quarters.</p>
<p>Isolate the indicated variable. </p><p><code class='latex inline'>\displaystyle 4x - y + 3 = 0</code>,<code class='latex inline'>x</code></p>
<p>Solve the relation or formula for the variable indicated:</p><p><code class='latex inline'>P = 2L + 2W</code>; solve for <code class='latex inline'>L</code></p>
<p>Solve each equation for the variable indicated.</p><p><code class='latex inline'>P = 2l + 2w; l</code></p>
<p>Start with the relation <code class='latex inline'>2x -5y = 20</code></p><p>Solve for <code class='latex inline'>x</code> in terms of <code class='latex inline'>y</code>.</p>
<p>Solve for <code class='latex inline'>y</code> in terms of <code class='latex inline'>x</code>.</p><p><code class='latex inline'>3x - 3y -9 = 0</code></p>
<p>Solve for <code class='latex inline'>y</code> in terms of <code class='latex inline'>x</code>.</p><p><code class='latex inline'>2.8x + 1.1y -5.3 = 0</code></p>
<p>Solve for the indicated variable. </p><p><code class='latex inline'> \displaystyle 0.12x - 0.06y = 0.24 </code>, <code class='latex inline'>y</code></p>
<p>Start with the relation <code class='latex inline'>2x -5y = 20</code></p><p>Graph this relation using <code class='latex inline'>x</code> as the independent variable. </p>
<p>Solve the formula for the indicated variable. Surface area of a cylinder: <code class='latex inline'>\displaystyle S=2 \pi r^{2}+2 \pi r h ; </code> Solve for <code class='latex inline'>\displaystyle h . </code></p>
<p>Solve each equation for y.</p><p><code class='latex inline'>\displaystyle x-y=-2 </code></p>
<p>Solve each equation for y.</p><p><code class='latex inline'>\displaystyle 5 x+y+9=0 </code></p>
<p>Start with the relation <code class='latex inline'>2x -5y = 20</code></p><p>Solve for <code class='latex inline'>y</code> in terms of <code class='latex inline'>x</code>.</p>
<p>Isolate y.</p><p><code class='latex inline'> \displaystyle - \frac{2y - 3x}{2} = \frac{5}{7} </code></p>
<p>Solve for <code class='latex inline'>y</code> in terms of <code class='latex inline'>x</code>.</p><p><code class='latex inline'>5x = 10y - 20</code></p>
<p>Solve each equation for y.</p><p><code class='latex inline'>\displaystyle 3 x-y+4=0 </code></p>
<p>Isolate the indicated variable. </p><p><code class='latex inline'>\displaystyle \frac{1}{2}x + y= 10</code>, <code class='latex inline'>x</code></p>
<p>A cell-phone company offers a plan of <code class='latex inline'>\$25</code> per month and <code class='latex inline'>\$0.10</code> per minute of talk. The cost, <code class='latex inline'>C</code>, in dollars, is given by the relation <code class='latex inline'>C = 25 + 0.10n</code>, where <code class='latex inline'>n</code> is the number of minutes used per month. Each month the company uses the exact air time to calculate ethane monthly bill.</p><p>Solve the relation for <code class='latex inline'>n</code> in terms of <code class='latex inline'>C</code>.</p>
<p>In each set of equations, identify the equation that is not equivalent to the others.</p><p><code class='latex inline'>x + 2y = -6</code>; <code class='latex inline'>y =\frac{x}{2} +3</code>; <code class='latex inline'>x = 2y - 6</code>; and <code class='latex inline'>x - 2y + 6 = 0</code></p>
<p>Solve for the indicated variable. </p><p><code class='latex inline'> \displaystyle 0.3x - 0.3y = 1.8 </code>, <code class='latex inline'>x</code></p>
<p>Ben has <code class='latex inline'>\$42.50</code> in quarters and dimes. </p><p><code class='latex inline'>25q + 10d = 4250</code> relates number of quarters to dimes when <code class='latex inline'>q</code> is number of quarters and <code class='latex inline'>d</code> is number of dimes.</p><p> Use one of your equation to determine the possible combinations of quarters and dimes Ben could have.</p>
<p>Solve for the indicated variable. </p><p><code class='latex inline'> \displaystyle 3u + 7v = 21 </code>, <code class='latex inline'>v</code></p>
<p>Solve each equation or formula for the specified variable.</p><p><code class='latex inline'>\displaystyle y=a x^{2}+b x+c </code>, for <code class='latex inline'>\displaystyle a </code></p>
<p>Solve each equation for x.</p><p><code class='latex inline'>\displaystyle 4 y+x+13=0 </code></p>
<p>Solve each equation for x.</p><p><code class='latex inline'>\displaystyle 7 y-x=-7 </code></p>
<p>Solve each equation for x.</p><p><code class='latex inline'>\displaystyle 2 y-x-1=0 </code></p>
<p>Solve each equation for y.</p><p><code class='latex inline'>\displaystyle 6 x+y=11 </code></p>
<p>Solve each equation for the variable indicated.</p><p><code class='latex inline'>A = P + Prt; t</code></p>
<p>Solve each equation for the variable indicated.</p><p><code class='latex inline'>A x + By = C; y</code></p>
<p>For formula <code class='latex inline'>C =\frac{5}{9}(F- 32)</code> is used to convert Fahrenheit temperatures to Celsius. </p><p>Solve for <code class='latex inline'>F</code> in terms of <code class='latex inline'>C</code>.</p>
<p>The formula for determining the surface area of a cylinder is <code class='latex inline'>SA = 2\pi r^2 + 2\pi r h</code>.</p><p>Determine the height of a cylinder with radius 5 cm and surface area 300 <code class='latex inline'>cm^2</code>.</p>
<p>Solve each equation or formula for the specified variable.</p><p><code class='latex inline'>\displaystyle z=\pi q^{3} h </code>, for <code class='latex inline'>\displaystyle h </code></p>
<p>The relation <code class='latex inline'>C = 8.00 + 0.50T</code> represents the cost of a pizza in dollars. <code class='latex inline'>T</code> represents the number of toppings ordered.</p><p><strong>(a)</strong> Write an equations that represents a <code class='latex inline'>\$10</code> order.</p><p><strong>(b)</strong> Solve the equations in a) to determine the number of toppings. Show all steps.</p>
<p>The formula for determining the surface area of a cylinder is <code class='latex inline'>SA = 2\pi r^2 + 2\pi r h</code>.</p><p>Solve for <code class='latex inline'>h</code> in terms of <code class='latex inline'>SA</code> and <code class='latex inline'>r</code>.</p>
<p>Solve each equation or formula for the specified variable.</p><p><code class='latex inline'>\displaystyle 8 r-5 q=3 </code>, for <code class='latex inline'>q</code>.</p>
<p>Solve for <code class='latex inline'>x</code>.</p><p><code class='latex inline'>\displaystyle \frac{3 + y}{x} = -4</code></p>
<p>Solve for <code class='latex inline'>y</code> in terms of <code class='latex inline'>x</code>.</p><p><code class='latex inline'>8x - 4y =12</code></p>
<p>Start with the relation <code class='latex inline'>2x -5y = 20</code></p><p>State the slope and the intercepts of the graph.</p>
<p>Solve for the indicated variable. </p><p><code class='latex inline'> \displaystyle \frac{1}{3}x + \frac{1}{2}y = 5 </code>, <code class='latex inline'>x</code></p>
<p>Isolate the indicated variable. </p><p><code class='latex inline'>\displaystyle 10x -y = 1</code>, <code class='latex inline'>y</code></p>
<p>Solve <code class='latex inline'>\displaystyle d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} </code> for <code class='latex inline'>\displaystyle y_{1} </code></p>
<p>Solve for <code class='latex inline'>y</code> in terms of <code class='latex inline'>x</code>.</p><p><code class='latex inline'>-2x - 3y =12</code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.