5. Q5b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Solve the linear system using the method of substitution. Check the solution.</p><p><code class='latex inline'>\begin{array}{c} y = 2x -13 \\ x + 2y = -6 \end{array}</code></p>
Similar Question 2
<p>Solve.</p><p><code class='latex inline'>\displaystyle y=2 x+5\\x+y=8 </code></p>
Similar Question 3
<p>Find the exact solution to the linear system.</p><p><code class='latex inline'>\displaystyle y=\frac{1}{2} x+3\\y=5-x </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Solve the linear system using the method of substitution. Check the solution.</p><p><code class='latex inline'>\begin{array}{c} y = 2x -13 \\ x + 2y = -6 \end{array}</code></p>
<p>Find the exact solution to the linear system.</p><p><code class='latex inline'>\displaystyle y=\frac{1}{2} x+3\\y=5-x </code></p>
<p>Decide which variable to isolate. Then substitute for this variable, and solve the system. </p><p><code class='latex inline'> \displaystyle x + 4y =21, 4x - 16 = y </code></p>
<p>Solve </p><p><code class='latex inline'>\displaystyle y=3 x-7\\x+2 y=7 </code></p>
<p>Solve. </p><p><code class='latex inline'>\displaystyle y=-x+3\\2 x+3 y=5 </code></p>
<p> If <code class='latex inline'>d = 3x - 7, e = 3 - 5x</code>, and <code class='latex inline'>f = -2x - 6</code>, simplify and then substitute the values for <code class='latex inline'>d, e</code>, and <code class='latex inline'>f</code> in the following to solve for <code class='latex inline'>x</code>.</p><p><code class='latex inline'>-4(4d + 1) + 3(6 - 3e) - 5(f + 3) = 0 </code></p>
<p>Solve.</p><p><code class='latex inline'>\displaystyle y=2 x+5\\x+y=8 </code></p>
<p>Explain why it would be appropriate to solve the following linear system either by substitution or by graphing.</p><p><code class='latex inline'> \displaystyle \begin{array}{cccc} x + y = 4 \\ y = 2x + 4 \end{array} </code></p>
<p>Solve linear system using the method of substitution. Check your answers.</p><p><code class='latex inline'> \displaystyle \begin{cases} 2x + 3y = -1\\ x = 1 - y \end{cases} </code></p>
<p>Solve the linear system using the method of substitution.</p><p><code class='latex inline'> \displaystyle x + y = -2 </code></p><p><code class='latex inline'> \displaystyle y = x + 6 </code></p>
<p> If <code class='latex inline'>d = 3x - 7, e = 3 - 5x</code>, and <code class='latex inline'>f = -2x - 6</code>, simplify and then substitute the values for <code class='latex inline'>d, e</code>, and <code class='latex inline'>f</code> in the following to solve for <code class='latex inline'>x</code>.</p><p><code class='latex inline'>2 - 4d + 3e - 2f = 0</code></p>
<p>Solve each system using any method. Explain why you chose the method you used.</p><p><code class='latex inline'>\displaystyle y=2.5 x\\2 y+3 x=32 </code></p>
<p>Use the substitution method to solve each linear system.</p><p><code class='latex inline'>\displaystyle 3 x+2 y-1=0 </code></p><p><code class='latex inline'>\displaystyle y=-x+3 </code></p>
<p> Solve each system of equations by substitution. If there is exactly one solution, check the solution.</p><p><code class='latex inline'>\displaystyle p=3 q-2\\9 q-3 p-6=0 </code></p>
<p>Solve the linear system.</p><p><code class='latex inline'>\displaystyle \begin{array}{llllllll} & y = 5x - 8 \\ & 10x - 5y =7 \end{array} </code></p>
<p>Decide which variable to isolate. Then substitute for this variable, and solve the system. </p><p> <code class='latex inline'> \displaystyle y = x -5, x + y = 9 </code></p>
<p> Solve this linear system using the method of substitution.</p><p><code class='latex inline'> \displaystyle \begin{array}{cccc} & 2y - x = -10 \\ & y = -\frac{3}{2}x - 1 \end{array} </code></p>
<p>In each pair, decide which equation you will use first to solve for one variable in terms of the other variable. Do that step. Do not solve the linear system.</p><p><code class='latex inline'> \displaystyle \begin{cases} 2x + 3y = -1 \text{ eq1}\\ x = 1 - y \text{ eq2} \end{cases} </code></p>
<p>Decide which variable to isolate. Then substitute for this variable, and solve the system. </p><p> <code class='latex inline'> \displaystyle x = y + 4, 3x + y = 16 </code></p>
<p>Solve each linear system. Verify each solution by substituting the coordinates of your solution into both equations.</p><p><code class='latex inline'>y=-x</code> and <code class='latex inline'>y=x - 6</code></p>
<p> Solve each system of equations by substitution. If there is exactly one solution, check the solution.</p><p><code class='latex inline'>\displaystyle y=5-2 x\\3 x=2 y+11 </code></p>
<p>State the method you would use to solve each system. Explain why you would choose each method.</p><p><code class='latex inline'>\displaystyle y=6-3 x\\y=2 x+1 </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.