21. Q21
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Find <code class='latex inline'>x</code> and <code class='latex inline'>y</code> in terms of <code class='latex inline'>a</code> and <code class='latex inline'>b</code>.</p><p><code class='latex inline'>ax + by = 1</code></p><p><code class='latex inline'>bx + ay = 1</code></p>
Similar Question 2
<p>For what value of <code class='latex inline'> c </code> will each system have no solution?</p><p><code class='latex inline'>\displaystyle c y+1=5 x\\9 y+8=15 x </code></p>
Similar Question 3
<p>A general system of linear equations is </p> <ul> <li><code class='latex inline'>ax + by = e</code></li> <li><code class='latex inline'>cx + dy = f</code> </li> </ul> <p>where <code class='latex inline'>a, b, c, d, e</code>, and <code class='latex inline'>f</code> are constant values. </p><p><strong>a)</strong> Use elimination to solve for <code class='latex inline'>x</code> and <code class='latex inline'>y</code> in terms of <code class='latex inline'>a,b, c, d, e</code>, and <code class='latex inline'>f</code>. </p><p><strong>b)</strong> Are there any values that <code class='latex inline'>a, b, c, d, e</code>, and <code class='latex inline'>f</code> cannot have? </p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Find <code class='latex inline'>x</code> and <code class='latex inline'>y</code> in terms of <code class='latex inline'>a</code> and <code class='latex inline'>b</code>.</p><p><code class='latex inline'>ax + by = 1</code></p><p><code class='latex inline'>bx + ay = 1</code></p>
<p>A general system of linear equations is </p> <ul> <li><code class='latex inline'>ax + by = e</code></li> <li><code class='latex inline'>cx + dy = f</code> </li> </ul> <p>where <code class='latex inline'>a, b, c, d, e</code>, and <code class='latex inline'>f</code> are constant values. </p><p><strong>a)</strong> Use elimination to solve for <code class='latex inline'>x</code> and <code class='latex inline'>y</code> in terms of <code class='latex inline'>a,b, c, d, e</code>, and <code class='latex inline'>f</code>. </p><p><strong>b)</strong> Are there any values that <code class='latex inline'>a, b, c, d, e</code>, and <code class='latex inline'>f</code> cannot have? </p>
<p>Solve the equation (isolate <code class='latex inline'>x</code>) for the following.</p><p><code class='latex inline'>\displaystyle ax + b = c </code></p>
<p>For what value of <code class='latex inline'> c </code> will each system have infinitely many solutions?</p><p><code class='latex inline'>\displaystyle c x-4 y=14\\-9 x+6 y=-21 </code></p>
<p>In the following system of equations, will there always be an ordered pair that satisfy the following? For what value will this system of equation will not have a solution?</p> <ul> <li><code class='latex inline'>ax + (a - b)y = b </code></li> <li><code class='latex inline'> bx + (a + b)y = a </code></li> </ul>
<p>For what value of <code class='latex inline'> c </code> will each system have no solution?</p><p><code class='latex inline'>\displaystyle c y+1=5 x\\9 y+8=15 x </code></p>
<p>For what value of <code class='latex inline'> c </code> will each system have infinitely many solutions?</p><p><code class='latex inline'>\displaystyle 2 x-6 y=c\\6 x-18 y=30 </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.