3. Q3e
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Determine the point of intersection of each pair of lines: </p><p><code class='latex inline'>5x+8y-12=0</code> and <code class='latex inline'>-5x+16y-12=0</code></p>
Similar Question 2
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &\frac{1}{2}x - 5 y = 7\\ &3x + \frac{y}{2} = \frac{23}{2} \\ \end{array} </code></p>
Similar Question 3
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &0.5x - 0.3 y = 1.5\\ &0.2x -0.1y = 0.7 \\ \end{array} </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Find the point of intersection of each pair of lines using the method of elimination. Check each solution. </p><p><code class='latex inline'>5x+3y = 9</code></p><p><code class='latex inline'>2x-3y = 12</code></p>
<p>Find the point of intersection of if it exists.</p><p><code class='latex inline'>\displaystyle \begin{array}{lllll} & \phantom{.} y = 1.25x - 0.375\\ & \phantom{.} 5y = 4x \end{array} </code></p>
<p> Find the point of intersection for each pair of lines. Check your answers.</p><p><code class='latex inline'>x + 2y = 4</code> and <code class='latex inline'>3x - 2y = 4</code></p>
<p>Does each pair of lines intersect at the given point? </p><p><code class='latex inline'>(-1, -3)</code>: <code class='latex inline'>y4x+1</code>, <code class='latex inline'>y=x-5</code></p>
<p>Determine, without graphing, the point of intersection for the lines with equations <code class='latex inline'>x + 3y = -1</code> and <code class='latex inline'>4x - y = 22</code>.</p>
<p>Find the point of intersection and sketch the graphs.</p><p><code class='latex inline'>\displaystyle x+ y = 6 </code></p><p><code class='latex inline'>\displaystyle 2x - y = 6 </code></p>
<p>Find the point of intersection of each pair of lines using the method of elimination. Check each solution. </p><p><code class='latex inline'>x+3y = 11</code></p><p><code class='latex inline'>-x +4y = -4</code></p>
<p>Find the point of intersection of the pair of lines.</p><p><code class='latex inline'> \displaystyle 2x + y = 7 </code> and <code class='latex inline'> \displaystyle x - y = - 1 </code></p>
<p>Determine the point of intersection of each pair of lines. </p><p><code class='latex inline'>0.25x-0.5y=1</code> and <code class='latex inline'>3.25x+4y=22.5</code></p>
<p>Determine the point of intersection of each pair of lines. </p><p><code class='latex inline'>2x+4y=7</code> and <code class='latex inline'>-x+0.75y=5</code></p>
<p>Find the point of intersection of each pair of lines using the method of elimination. Check each solution. </p><p><code class='latex inline'> 4x +5y = 18</code></p><p><code class='latex inline'>4x +y = 2</code></p>
<p>Solve the linear system. Check each solution.</p><p><code class='latex inline'> \displaystyle 3x + 2y = 34 </code> and <code class='latex inline'> \displaystyle 5x - 3y = -13 </code></p>
<p>Find the point of intersection of if it exists.</p><p><code class='latex inline'>\displaystyle \begin{array}{lllll} & \phantom{.} y = 5x - \frac{3}{2} \\ & \phantom{.} y = 5x - 1.5 \end{array} </code></p>
<p>Determine the point of intersection for system of linear equations shown below. </p><p><code class='latex inline'>y=\frac{1}{2}x+1</code> and <code class='latex inline'>y=-x+4</code></p>
<p>Find the point of intersection of if it exists.</p><p><code class='latex inline'>\displaystyle \begin{array}{lllll} & \phantom{.} y = 4x - 3 \\ & \phantom{.} y = 4x - 7 \end{array} </code></p>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &5x - 12 y = 1\\ &13x + 9y = 16\\ \end{array} </code></p>
<p>Determine the point of intersection of each pair of lines: </p><p><code class='latex inline'>y=2</code> and <code class='latex inline'>y=5</code></p>
<p>Find the point of intersection of the pair of lines.</p><p><code class='latex inline'> \displaystyle 2x + 5y = 3 </code> and <code class='latex inline'> \displaystyle 2x - y = - 3 </code></p>
<p>Why does a system of two linear equations usually have only one solution for each of the two variables?</p>
<p>Determine the point of intersection of each pair of lines: </p><p><code class='latex inline'>y-x=9</code> and <code class='latex inline'>\displaystyle x-\frac{1}{6}y=-\frac{2}{3}</code></p>
<p>Find the point of intersection of each pair of lines. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 2x + 3y = -18\\ 3x - 5y =11 \end{cases} </code></p>
<p>Given the lines <code class='latex inline'>y=2</code> and <code class='latex inline'>y=4x+9</code>,</p> <ul> <li>Create the linear equation that you would solve to determine the <code class='latex inline'>x-</code> value of the point of intersection.</li> </ul>
<p>Determine the point of intersection for system of linear equations shown below. </p><p><code class='latex inline'>y=x+1</code> and <code class='latex inline'>y=4x-5</code></p>
<p>Given the lines <code class='latex inline'>y=2</code> and <code class='latex inline'>y=4x+9</code>,</p> <ul> <li>Determine the point of intersection using a graph.</li> </ul>
<p>Find the point of intersection of the pair of lines.</p><p><code class='latex inline'> \displaystyle 3x + 2y = 5 </code> and <code class='latex inline'> \displaystyle x - 2y = - 1 </code></p>
<p>Determine the point of intersection of each pair of lines. </p><p><code class='latex inline'>y=-3x-2</code> and <code class='latex inline'>2x+3y=5</code></p>
<p>Determine, without graphing, the point of intersection for the lines with equations <code class='latex inline'>x + 3y = -1</code> and <code class='latex inline'>4x - y = 22</code>.</p>
<p>Find the point of intersection of each pair of lines using the method of elimination. Check each solution. </p><p><code class='latex inline'> x+y=5</code></p><p><code class='latex inline'>3x-y=11</code></p>
<p>Find the point of intersection of each pair of lines. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 2a - 3b = -10\\ 4a + b = 1 \end{cases} </code></p>
<p>Determine the point of intersection for system of linear equations shown below. </p><p><code class='latex inline'>y=2x-1</code> and <code class='latex inline'>y=-x+3</code></p>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &\frac{x}{11} - \frac{y}{8} = -2 \\ &\\ &\frac{x}{2} -\frac{y}{4} = 3\\ \end{array} </code></p>
<p>Does each pair of lines intersect at the given point? </p><p><code class='latex inline'>(1, -1)</code>: <code class='latex inline'>y=5x-4</code>, <code class='latex inline'>y=2x-3</code></p>
<p>Solve the linear system. Check each solution.</p><p><code class='latex inline'> \displaystyle 3x + 2y = 12 </code> and </p><p><code class='latex inline'> \displaystyle 2x + 3y = 13 </code></p>
<p>Determine the point of intersection of each pair of lines: </p><p><code class='latex inline'>5x+8y-12=0</code> and <code class='latex inline'>-5x+16y-12=0</code></p>
<p>Determine the point of intersection for system of linear equations shown below. </p><p><code class='latex inline'>y=x</code> and <code class='latex inline'>y=-x</code> </p>
<p>Determine, without graphing, the point of intersection for the lines with equations <code class='latex inline'>x + 3y = -1</code> and <code class='latex inline'>4x - y = 22</code>.</p>
<p>Determine the point of intersection of each pair of lines: </p><p><code class='latex inline'>4x+y-2=0</code> and <code class='latex inline'>8x+2y-4=0</code></p>
<p>Find the point of intersection of if it exists.</p><p><code class='latex inline'>\displaystyle \begin{array}{lllll} & \phantom{.} x + 2y = 10 \\ & \phantom{.} y = 8 - 0.5x \end{array} </code></p>
<p> Find the point of intersection for each pair of lines. Check your answers.</p><p><code class='latex inline'>x - y = 1</code> and <code class='latex inline'>x + 2y = 4</code></p>
<p>Determine the point of intersection of each pair of lines: </p><p><code class='latex inline'>2x-y=0</code> and <code class='latex inline'>y=5+2x</code></p>
<p>Find the point of intersection for each pair of lines. Check your answers.</p><p><code class='latex inline'>y = -x - 7</code> and <code class='latex inline'>y = 3x + 5</code></p>
<p>Which is the point of intersection of the lines <code class='latex inline'>y= 3x + 1</code> and <code class='latex inline'>y= -2x + 6</code>?</p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &A &(0, 1) &B&(1,1) \\ &C &(1, 4) &B&(2,5) \\ \end{array} </code></p>
<p> Draw a line which has slope of <code class='latex inline'>3</code> and passes through the point <code class='latex inline'>(3, -1)</code>. Draw another line which has slope of <code class='latex inline'>-1</code> and passes through <code class='latex inline'>(-1, 4)</code>. Find their intersection point.</p>
<p>Find the point of intersection of the pair of lines.</p><p><code class='latex inline'> \displaystyle x - y = 3 </code> and <code class='latex inline'> \displaystyle 2x + y = 3 </code></p>
<p>Find the point of intersection of each pair of lines. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 3x +y = 13\\ 2x + 3y = 18 \end{cases} </code></p>
<p>Does each pair of lines intersect at the given point? </p><p><code class='latex inline'>(2, 3)</code>: <code class='latex inline'>y=x+1</code>, <code class='latex inline'>y=4x-5</code></p>
<p> Find the point of intersection for each pair of lines. Check your answers.</p><p><code class='latex inline'>3x - 2y = 12</code> and <code class='latex inline'>2y - x = -8</code></p>
<p>Find the point of intersection for each pair of lines. Check your answers.</p><p><code class='latex inline'>y = 4x - 5</code> and <code class='latex inline'>y = \frac{2}{3}x +5</code></p>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &\frac{1}{2}x - 5 y = 7\\ &3x + \frac{y}{2} = \frac{23}{2} \\ \end{array} </code></p>
<p>Determine the point of intersection of each pair of lines: </p><p><code class='latex inline'>5x-2.5y=10</code> and <code class='latex inline'>3.1x+4y=6.2</code></p>
<p>Determine the point of intersection of each pair of lines: </p><p><code class='latex inline'>\frac{1}{3}x-\frac{2}{5}y+\frac{1}{4}=0</code> and <code class='latex inline'>2x-\frac{1}{7}y+\frac{1}{2}=0</code></p>
<p>Determine the coordinates of point <code class='latex inline'>E</code>.</p><img src="/qimages/633" />
<p>Given the relation <code class='latex inline'>x+y=5</code>, determine a second relation that:</p> <ul> <li><code class='latex inline'>does\ not</code> intersect <code class='latex inline'>x+y=5</code></li> </ul>
<p>Find the point of intersection and sketch the graphs.</p><p><code class='latex inline'>\displaystyle x - y = 3 </code></p><p><code class='latex inline'>\displaystyle 3x + y = 5 </code></p>
<p>Find the point of intersection of if it exists.</p><p><code class='latex inline'>\displaystyle \begin{array}{lllll} & \phantom{.} 2x + 3y = 10 \\ & \phantom{.} 10x + 15y = 50 \end{array} </code></p>
<p> Determine the point of intersection for each pair of lines. Verify your solution. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccc} &0.5x - 0.3 y = 1.5\\ &0.2x -0.1y = 0.7 \\ \end{array} </code></p>
<p> Find the point of intersection for each pair of lines. Check your answers.</p><p><code class='latex inline'>y = 2x + 3</code> and <code class='latex inline'>y = 4x - 1</code></p>
<p>Determine the point of intersection for each pair of lines. Verify your solution. </p><p> <code class='latex inline'> \displaystyle \begin{array}{ccccc} 4x + 7y = 23 \\ 6x - 5y = - 12 \end{array} </code></p>
<p>Determine the point of intersection of each pair of lines. </p><p><code class='latex inline'>y=3x+6</code> and <code class='latex inline'>1=3x-y</code></p>
<p>Find the point of intersection of if it exists.</p><p><code class='latex inline'>\displaystyle \begin{array}{lllll} & \phantom{.} 2x - 5 = 4y\\ & \phantom{.} 0.01x -0.02y = 0.25 \end{array} </code></p>
<p>Find the point of intersection and sketch the graphs.</p><p><code class='latex inline'>\displaystyle 2x + 3y = 5 </code></p><p><code class='latex inline'>\displaystyle x - 3y = 4 </code></p>
<p>To determine the point of intersection of <code class='latex inline'>y=2x+5</code> and <code class='latex inline'>y=4x-3</code>, Elena wrote <code class='latex inline'>2x+5=4x-3</code> and solved the equation. Why is this a reasonable strategy for determining the point of intersection of the two lines? </p>
<p>Find the point of intersection of if it exists.</p><p><code class='latex inline'>\displaystyle \begin{array}{lllll} & \phantom{.} 3x - 5y -2= 0 \\ & \phantom{.} 4x + 5y + 2= 0 \end{array} </code></p>
<p>Does each pair of lines intersect at the given point? </p><p><code class='latex inline'>(0, 2)</code>: <code class='latex inline'>y=3x+2</code>, <code class='latex inline'>y5x-1</code></p>
<p>Find the point of intersection and sketch the graphs.</p><p><code class='latex inline'>\displaystyle x + y = 6 </code></p><p><code class='latex inline'>\displaystyle 2x - y = 6 </code></p>
<p> Find the point of intersection for each pair of lines. Check your answers.</p><p> <code class='latex inline'>y + 2x = -5</code> and <code class='latex inline'>y - 3x = 5</code></p>
<p>Find the point of intersection of each pair of lines. Check each solution.</p><p><code class='latex inline'> \displaystyle \begin{cases} 3x -2y + 2 = 0\\ 7x - 6y + 11 = 0 \end{cases} </code></p>
<p>Given the relation <code class='latex inline'>x+y=5</code>, determine a second relation that:</p> <ul> <li>intersects <code class='latex inline'>x+y=5</code> at (2, 3)</li> <li><code class='latex inline'>does\ not</code> intersect <code class='latex inline'>x+y=5</code></li> </ul>
<p>Find the point of intersection for each pair of lines. Check your answers.</p><p><code class='latex inline'>y = \frac{1}{2}x - 2</code> and <code class='latex inline'>y = 4x - 5</code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.