7. Q7b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>a) Determine whether the point <code class='latex inline'>A(-2, -6)</code> lies on the circle defined by <code class='latex inline'>x^2 + y^2 = 40</code>.</p><p>b) Find an equation for the radius from the origin <code class='latex inline'>O</code> to point <code class='latex inline'>A</code>.</p><p>c) Find an equation for the line that passes through <code class='latex inline'>A</code> and is perpendicular to <code class='latex inline'>OA</code>.</p><p>d) Use a graph to check your answers to parts a), b), and c).</p><p>e) Explain why <code class='latex inline'>A</code> is the only point on the line that also lies on the circle.</p>
Similar Question 2
<p>Determine whether each point is on, inside, or outside the circle defined by <code class='latex inline'>x^2 + y^2 = 34</code></p><p><code class='latex inline'> \displaystyle (\sqrt{34}, 0) </code></p>
Similar Question 3
<p>a) Graph the circle defined by <code class='latex inline'>x^2 + y^2 = 40</code>.</p><p>b) which of the points below </p> <ul> <li><code class='latex inline'>R(-6, 2)</code></li> <li> <code class='latex inline'>S(2, -6)</code></li> </ul> <p>are on the circle?</p><p>c) Determine an equation for the line joining the centre 0 to the midpoint of this chord.</p><p>d) Verify that this line is perpendicular to the chord.</p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Determine whether each point is on, inside, or outside the circle defined by <code class='latex inline'>x^2 + y^2 = 34</code>.</p><p><code class='latex inline'>(-6, 0)</code></p>
<p>a) Graph the circle defined by <code class='latex inline'>x^2 + y^2 = 40</code>.</p><p>b) which of the points below </p> <ul> <li><code class='latex inline'>R(-6, 2)</code></li> <li> <code class='latex inline'>S(2, -6)</code></li> </ul> <p>are on the circle?</p><p>c) Determine an equation for the line joining the centre 0 to the midpoint of this chord.</p><p>d) Verify that this line is perpendicular to the chord.</p>
<p>For each equation, state the radius of the corresponding circle and give the coordinates of one point on the circle. </p><p><code class='latex inline'> \displaystyle \begin{array}{ccccccc} &(a) & x^2 + y^2 =36 &(b)& x^2 + y^2 =144 \\ &(c) & x^2 + y^2 = 20 &(d)& x^2 + y^2 = 50 \\ &(e)& x^2 + y^2 = 1.69 \end{array} </code></p>
<p>For <code class='latex inline'>x^2 + y^2 = 25</code>, verify algebraically that the point <code class='latex inline'>A(-3, -4)</code> lies on the circle.</p>
<p>A communication tower can send and receive signals from cell phones up to <code class='latex inline'>20</code> km away. A cell phone user is <code class='latex inline'>15</code> km east and <code class='latex inline'>13</code> km south of the tower. Is this user able to receive a signal from the tower?</p>
<p>Determine whether each point is on, inside, or outside the circle defined by <code class='latex inline'>x^2 + y^2 = 34</code>.</p><p><code class='latex inline'>(2, -6)</code></p>
<p>For each equation, state the radius of the corresponding circle and give the coordinates of one point on the circle.</p><p><code class='latex inline'> x^2 + y^2 = 81</code></p><p><code class='latex inline'> x^2 + y^2 = 1.21</code></p>
<p>For each equation, state the radius of the corresponding circle and give the coordinates of one point on the circle.</p><p><code class='latex inline'>x^2 + y^2 = 9</code></p><p><code class='latex inline'> x^2 + y^2 = 81</code></p>
<p>Determine whether each point is on, inside, or outside the circle defined by <code class='latex inline'>x^2 + y^2 = 34</code>.</p><p><code class='latex inline'>(5, -3)</code></p>
<p>A farmer is building a circular corral to hold livestock. With distances measured in metres, the shape of the corral is modelled by the equation <code class='latex inline'>x^2 + y^2 = 64</code>.</p><p><strong>a)</strong> Find the length of fencing required for this corral.</p><p><strong>b)</strong> Find the area of the corral.</p>
<p>Find an equation for the circle that is centred on the origin and has a radius of <code class='latex inline'>\sqrt{12}</code>.</p>
<p>Determine whether each point is on, inside, or outside the circle defined by <code class='latex inline'>x^2 + y^2 = 34</code>.</p><p><code class='latex inline'>(4, 4)</code></p>
<p>a) Determine whether the point <code class='latex inline'>A(-2, -6)</code> lies on the circle defined by <code class='latex inline'>x^2 + y^2 = 40</code>.</p><p>b) Find an equation for the radius from the origin <code class='latex inline'>O</code> to point <code class='latex inline'>A</code>.</p><p>c) Find an equation for the line that passes through <code class='latex inline'>A</code> and is perpendicular to <code class='latex inline'>OA</code>.</p><p>d) Use a graph to check your answers to parts a), b), and c).</p><p>e) Explain why <code class='latex inline'>A</code> is the only point on the line that also lies on the circle.</p>
<p>Determine whether each point is on, inside, or outside the circle defined by <code class='latex inline'>x^2 + y^2 = 34</code></p><p><code class='latex inline'> \displaystyle (\sqrt{34}, 0) </code></p>
<p>Determine whether each point is on, inside, or outside the circle defined by <code class='latex inline'>x^2 + y^2 = 34</code>.</p><p><code class='latex inline'>(-3, -5)</code></p>
<p>Points <code class='latex inline'>P(-9,2)</code> and <code class='latex inline'>Q(9,-2)</code> are endpoints of a diameter of a circle.</p><p>The point <code class='latex inline'>R(7, 6)</code> is ?</p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.