7. Q7d
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Factor. </p><p><code class='latex inline'>2xy^2-26xy+84x</code></p>
Similar Question 2
<p>Factor. </p><p> <code class='latex inline'>x^3-3x^2-10x</code></p>
Similar Question 3
<p>Factor fully.</p><p><code class='latex inline'>\displaystyle m^3 + 3m^2-4m </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Identify the type of algebraic expression and the factoring strategies you would use to factor the expression.</p><p><code class='latex inline'>\displaystyle 6xy + 12x^2y^2 -4x^3y^3 </code></p>
<p>Factor.</p><p><code class='latex inline'>6x^3-63x-13x^2</code></p>
<p>Factor. </p><p><code class='latex inline'>12n^3-75n^2+108n</code></p>
<p>Factor. </p><p> <code class='latex inline'>x^3-3x^2-10x</code></p>
<p>Factor fully, if possible.</p><p><code class='latex inline'>\displaystyle y^{3}-18 y^{2}+81 y </code></p>
<p>Factor each expression.</p><p><code class='latex inline'>c^3d^3+2c^2d^2-8cd</code></p>
<p>Factor.</p><p><code class='latex inline'>xy^3 + 2xy^2 + xy</code></p>
<p>Factor fully.</p><p><code class='latex inline'>\displaystyle x^{3}-4 x^{2}+4 x </code></p>
<p>Factor each polynomial.</p><p><code class='latex inline'>\displaystyle 8 x^{2} z^{2}-4 x z^{2}-12 z^{2} </code></p>
<p>Factor.</p><p><code class='latex inline'>\displaystyle 15p^2qr^3-25p^3q^2r + 5pqr </code></p>
<p>Explain why each expression is not factored fully.</p><p><code class='latex inline'>x^2y-9xy+20y=y(x^2-9x+20)</code></p>
<p>Factor fully</p><p><code class='latex inline'>\displaystyle 4x^2y - 44xy + 72y </code></p>
<p>Fully factor each polynomial by applying one or more strategies.</p><p><code class='latex inline'>\displaystyle 2 d^{3}-10 d^{2}+8 d </code></p>
<p>Factor, if possible.</p><p><code class='latex inline'>\displaystyle 12 y-8 y^{2}+24 y^{3} </code></p>
<p>Factor fully, if possible.</p><p><code class='latex inline'>2h^4+6h^3-4h^2</code></p>
<p>Factor. </p><p><code class='latex inline'>2xy^2-26xy+84x</code></p>
<p>Factor.</p><p><code class='latex inline'>\displaystyle 4 x^{3}-6 x^{2}+2 x </code></p>
<p>Factor each polynomial.</p><p><code class='latex inline'>\displaystyle 18 x^{2} y^{2}-24 x y^{2}+36 y^{2} </code></p>
<p>Factor each expression.</p><p> <code class='latex inline'>-6x-51xy+27xy^2</code></p>
<p>Factor. </p><p><code class='latex inline'>7x^4+28x^3-147x^2</code></p>
<p>Factor fully.</p><p><code class='latex inline'>\displaystyle a y^{2}+12 a y-28 a </code></p>
<p>Factor.</p><p><code class='latex inline'>x^3-11x^2+18x</code></p>
<p>Factor fully.</p><p><code class='latex inline'>-6b^2a-9b^3+15b^2</code></p>
<p>Factor fully.</p><p><code class='latex inline'>\displaystyle 3 y^{3}-7 y^{2}+2 y </code></p>
<p>Factor completely by first removing the greatest common factor (GCF).</p><p><code class='latex inline'>bx^2+10bx-24b</code></p>
<p>Factor fully.</p><p><code class='latex inline'>\displaystyle a y^{2}+a y-12 a </code></p>
<p>Factor each, if possible.</p> <ul> <li><p><code class='latex inline'>ax^2 + 10 ax - 24a </code></p></li> <li><p><code class='latex inline'> x^3 + 18x^2 + 72x</code></p></li> <li><p><code class='latex inline'> 3x - 2x^2 - x^3</code></p></li> </ul>
<p>Factor fully.</p><p><code class='latex inline'>\displaystyle m^3 + 3m^2-4m </code></p>
<p>Factor completely by first removing the greatest common factor (GCF).</p><p><code class='latex inline'>x^3+18x^2+72x</code></p>
<p>Factor fully, if possible.</p><p><code class='latex inline'>\displaystyle 5 m^{3}-40 m^{2}+80 m </code></p>
<p>Mark says that the greatest common factor of <code class='latex inline'>-5x^3+10x^2-20x</code> is <code class='latex inline'>5x</code>. Jen says that the greatest common factor is <code class='latex inline'>-5x</code>. Explain why both Mark and Jen are correct.</p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.