8. Q8a
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Factor.</p><p><code class='latex inline'>10x^2+15x-10</code></p>
Similar Question 2
<p>Factor. </p><p><code class='latex inline'>3k^2-6k-24</code></p>
Similar Question 3
<p>Factor.</p><p><code class='latex inline'>9p^2+15p-6</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Factor fully, if possible.</p><p><code class='latex inline'>64j^2-112jk+49k^2</code></p>
<p>Factor completely by first removing the greatest common factor (GCF).</p><p><code class='latex inline'>5z^2+40z+60</code></p>
<p>Factor completely.</p><p><code class='latex inline'>\displaystyle 3t^2 + 6t + 3 </code></p>
<p>Factor. </p><p><code class='latex inline'>3k^2-6k-24</code></p>
<p>Factor </p><p><code class='latex inline'>\displaystyle 3n^2 -6n + 15 </code></p>
<p>Factor. You may first need to determine a common factor. </p><p><code class='latex inline'>3x^2+18x+15</code></p>
<p>Factor completely by first removing the greatest common factor.</p><p><code class='latex inline'>5k^2+50k+80</code></p>
<p>Factor.</p><p><code class='latex inline'>3x^2+24x + 45</code></p>
<p>Factor.</p><p><code class='latex inline'>2s^2+4s-6</code></p>
<p>Factor fully, if possible.</p><p><code class='latex inline'>100f^2-120fg+36g^2</code></p>
<p>Factor.</p><p><code class='latex inline'>4x^2+16x-48</code></p>
<p>Factor. Then, substitute <code class='latex inline'>x=2</code> into both forms. Are the results the same? Explain. </p><p><code class='latex inline'>8x^2+14x-4</code></p>
<p>Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.</p><p><code class='latex inline'>\displaystyle 12 x^{2}-84 x+147 </code></p>
<p>Factor. You may first need to determine a common factor. </p><p> <code class='latex inline'>3x^2+12x-63</code></p>
<p>Factor.</p><p><code class='latex inline'>10r^2-22r+4</code></p>
<p>Factor. </p><p> <code class='latex inline'>-3x^2-27x-54</code></p>
<p>Fully factor each polynomial by applying one or more strategies.</p><p><code class='latex inline'>\displaystyle 40 g^{2}-200 g+250 </code></p>
<p>Factor fully.</p><p><code class='latex inline'>\displaystyle 3x^2 -12x + 12 </code></p>
<p>Factor fully, if possible.</p><p><code class='latex inline'>2a^2-28ab+98b^2</code></p>
<p>Factor.</p><p><code class='latex inline'>10t^2-4t-14</code></p>
<p>Factor completely by first removing the greatest common factor (GCF).</p><p><code class='latex inline'>3x^2+12x+9</code></p>
<p>Factor each polynomial. Look for common factors first.</p><p><code class='latex inline'>\displaystyle 5 b^{2}+15 b+10 </code></p>
<p>Factor</p><p><code class='latex inline'>\displaystyle 2a^2 -2a -24 </code></p>
<p>Factor.</p><p><code class='latex inline'>\displaystyle 16 a^{2}-24 a+9 </code></p>
<p>Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.</p><p><code class='latex inline'>\displaystyle 8 c^{2}-88 c+242 </code></p>
<p>Factor.</p><p><code class='latex inline'>8y^2-22y+12</code></p>
<p>Factor completely by first removing the greatest common factor (GCF).</p><p><code class='latex inline'>4s^2-8s-32</code></p>
<p>Factor completely by first removing the greatest common factor (GCF).</p><p> <code class='latex inline'>2d^2-22d+56</code></p>
<p>Factor.</p><p><code class='latex inline'>8k^2-16k+6</code></p>
<p>Fully factor each polynomial by applying one or more strategies.</p><p><code class='latex inline'>\displaystyle 2 x^{2}+16 x+8 </code></p>
<p>Factor fully, if possible.</p><p><code class='latex inline'>9k^2-24km+16m^2</code></p>
<p>Factor completely by first removing the greatest common factor.</p><p><code class='latex inline'>3x^2+15x+18</code></p>
<p>Factor fully, if possible.</p><p><code class='latex inline'>4x^2+28xy+49y^2</code></p>
<p>Factor completely.</p><p><code class='latex inline'>\displaystyle -5x^2 + 40x -80 </code></p>
<p>Factor each polynomial. Look for common factors first.</p><p><code class='latex inline'>\displaystyle 6 r^{2}+3 r-45 </code></p>
<p>Factor.</p><p><code class='latex inline'>6m^2-14m-12</code></p>
<p>Factor each, if possible.</p> <ul> <li><code class='latex inline'>6x^2 - 9xy + 3y^2</code></li> </ul>
<p>Factor each polynomial. Look for common factors first.</p><p><code class='latex inline'>\displaystyle 2 x^{2}+6 x+8 </code></p>
<p>Factor.</p><p><code class='latex inline'>9p^2+15p-6</code></p>
<p>Factor each expression. Remember to divide out all common factors first.</p><p><code class='latex inline'>\displaystyle 5 m^{2}+15 m-20 </code></p>
<p>Factor.</p><p><code class='latex inline'>10x^2+15x-10</code></p>
<p>Factor.</p><p><code class='latex inline'>2n^2-4n-70</code></p>
<p>How does knowing that factoring is the opposite of expanding help you factor a polynomial such as <code class='latex inline'>-4x^2+38x-48</code>?</p>
<p>Factor.</p><p><code class='latex inline'> \displaystyle 6m^2-90m + 324 </code></p>
<p>Factor completely by first removing the greatest common factor.</p><p><code class='latex inline'>4m^2-32m+48</code></p>
<p>Factor</p><p><code class='latex inline'>\displaystyle 3x^2-6x + 9 </code></p>
<p>Fully factor each expression.</p><p><code class='latex inline'>\displaystyle (x+3) x^{2}+(x+3) x-(x+3) 20 </code></p>
<p>Factor each, if possible.</p> <ol> <li><code class='latex inline'> y^2 - 20y + 36</code></li> <li><code class='latex inline'>16 - 6x - x^2</code></li> <li><code class='latex inline'> 8 + 7y - y^2</code></li> </ol>
<p>Fully factor each polynomial by applying one or more strategies.</p><p><code class='latex inline'>\displaystyle 3 w^{2}-9 w-30 </code></p>
<p>Fully factor each polynomial by applying one or more strategies.</p><p><code class='latex inline'>\displaystyle 3 h^{2}-24 h+48 </code></p>
<p>Factor</p><p><code class='latex inline'>\displaystyle 5m^2 - 10m -5 </code></p>
<p>Factor fully.</p><p><code class='latex inline'>\displaystyle 8n^2 + 8n - 6 </code></p>
<p>Factor. </p><p><code class='latex inline'> \displaystyle 16x^2+76x + 90 </code> </p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.