8. Q8c
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<ol> <li>Solve. Give exact answers.</li> </ol> <p>a) <code class='latex inline'>\displaystyle x^{4}-10 x^{2}+9=0 </code></p>
Similar Question 2
<p>Factor each expression, if possible.</p><p> <code class='latex inline'>4(c-5)^4+12(c-5)^2+9</code></p>
Similar Question 3
<p>Factor</p><p><code class='latex inline'>x^4+11x^2+30</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Factor.</p><p><code class='latex inline'>k^4-8k^2+16</code></p>
<p>Factor.</p><p><code class='latex inline'>z^4-13z^2+36</code></p>
<p> Determine the zeros of each polynomial function.</p> <ul> <li>i. <code class='latex inline'> \displaystyle f(x) = x^4 - 13x^2 + 36 </code></li> <li>ii. <code class='latex inline'> \displaystyle g(x) = 6x^5 -7x^3 -3x </code></li> </ul>
<p>Factor each expression.</p><p><code class='latex inline'>x^4-24x^2+144</code></p>
<p>Explain how <code class='latex inline'>x^4+9x^2+20</code> and <code class='latex inline'>x^2+9x+20</code> are alike. How are they different?</p>
<p>Factor.</p><p><code class='latex inline'>a^4-13a^2+36</code></p>
<p>Factor <code class='latex inline'>x^4+9x^2+20</code></p>
<p>The polynomial <code class='latex inline'>x^4 - 5x^2 + 4</code> is not factorable, but it can be factored by a form of completing the square:</p><p><code class='latex inline'>x^4 - 5x^2 + 4</code></p><p><code class='latex inline'>= x^4 + 4x^2 + 4 - 4x^2 - 5x^2</code></p><p><code class='latex inline'>= (x^2 + 2)^2 - 9x^2</code></p><p><code class='latex inline'>= (x^2 + 2 - 3x)(x^2 + 2 + 3x)</code></p><p><code class='latex inline'>= (x^2 - 3x + 2)(x^2 + 3x + 2)</code></p><p><code class='latex inline'>= (x - 2)(x - 1)(x + 2)(x + 1)</code></p><p>Use this strategy to factor each polynomial by creating a perfect square.</p><p><code class='latex inline'> \displaystyle x^4 + 3x^2 + 36 </code></p>
<p>Factor each of the following expression.</p><p><code class='latex inline'>x^4+8x^2y^2+7y^4</code></p>
<p>Factor each expression.</p><p><code class='latex inline'>x^4-12x^2+36</code></p>
<p>Factor each expression, if possible.</p><p> <code class='latex inline'>4(c-5)^4+12(c-5)^2+9</code></p>
<p>Factor.</p><p><code class='latex inline'>a^8+14a^4+49</code></p>
<p>Factor the following fully and simplify.</p><p><code class='latex inline'>\displaystyle x^4 - 34x^2 + 288 </code></p>
<p>Factor.</p><p><code class='latex inline'>\displaystyle x^{4}+22 x^{2}+121 </code></p>
<p>The polynomial <code class='latex inline'>x^4 - 5x^2 + 4</code> is not factorable, but it can be factored by a form of completing the square:</p><p><code class='latex inline'>x^4 - 5x^2 + 4</code></p><p><code class='latex inline'>= x^4 + 4x^2 + 4 - 4x^2 - 5x^2</code></p><p><code class='latex inline'>= (x^2 + 2)^2 - 9x^2</code></p><p><code class='latex inline'>= (x^2 + 2 - 3x)(x^2 + 2 + 3x)</code></p><p><code class='latex inline'>= (x^2 - 3x + 2)(x^2 + 3x + 2)</code></p><p><code class='latex inline'>= (x - 2)(x - 1)(x + 2)(x + 1)</code></p><p>Use this strategy to factor each polynomial by creating a perfect square.</p><p><code class='latex inline'> \displaystyle x^4 - 23x^2 + 49 </code></p>
<ol> <li>Solve. Give exact answers.</li> </ol> <p>a) <code class='latex inline'>\displaystyle x^{4}-10 x^{2}+9=0 </code></p>
<p>Factor</p><p><code class='latex inline'>x^4+11x^2+30</code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.