1. Q1e
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>The following transformations are applied to a parabola with the equation <code class='latex inline'>y=x^2</code>. Determine the values of <code class='latex inline'>h</code> and <code class='latex inline'>k</code>, and write the equation in the form <code class='latex inline'>y=(x-h)^2+k</code>.</p> <ul> <li>The parabola moves 2 units right and 5 units up.</li> </ul>
Similar Question 2
<p>The following transformations are applied to a parabola with the equation <code class='latex inline'>y=x^2</code>. Determine the values of <code class='latex inline'>h</code> and <code class='latex inline'>k</code>, and write the equation in the form <code class='latex inline'>y=(x-h)^2+k</code>.</p> <ul> <li>The parabola moves 7 units down and 6 units left.</li> </ul>
Similar Question 3
<p>The following transformations are applied to a parabola with the equation <code class='latex inline'>y=x^2</code>. Determine the values of <code class='latex inline'>h</code> and <code class='latex inline'>k</code>, and write the equation in the form <code class='latex inline'>y=(x-h)^2+k</code>.</p> <ul> <li>The parabola moves 2 units right and 5 units up.</li> </ul>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p> Write the equation of the parabola which satisfied the given conditions.</p><p>congruent to <code class='latex inline'>y = 3x^2</code> with horizontal shift of <code class='latex inline'>\frac{2}{3}</code> and vertical shift of <code class='latex inline'>5</code>.</p>
<p>The following transformations are applied to a parabola with the equation <code class='latex inline'>y=x^2</code>. Determine the values of <code class='latex inline'>h</code> and <code class='latex inline'>k</code>, and write the equation in the form <code class='latex inline'>y=(x-h)^2+k</code>.</p> <ul> <li>The parabola moves 7 units down and 6 units left.</li> </ul>
<p> Write the equation of the parabola which satisfied the given conditions.</p><p>congruent to <code class='latex inline'>y = x^2</code> with horizontal shift of <code class='latex inline'>2</code> and vertical shift of <code class='latex inline'>-3</code>.</p>
<p> Write the equation of the parabola which satisfied the given conditions.</p><p>congruent to <code class='latex inline'>y = -x^2</code> with horizontal shift of <code class='latex inline'>\pi</code> and vertical shift of <code class='latex inline'>\sqrt{2}.</code></p>
<p>The following transformations are applied to a parabola with the equation <code class='latex inline'>y=x^2</code>. Determine the values of <code class='latex inline'>h</code> and <code class='latex inline'>k</code>, and write the equation in the form <code class='latex inline'>y=(x-h)^2+k</code>.</p> <ul> <li>The parabola moves 2 units right and 5 units up.</li> </ul>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.