3. Q3b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Sketch the graph of each parabola. Label at least three points on the parabola. Describe the transformation from the graph of <code class='latex inline'>y =x^2</code>.</p><p><code class='latex inline'>\displaystyle y =(x + 3)^2 </code></p>
Similar Question 2
<p>For the set of functions, transform the graph of <code class='latex inline'>f(x)</code> to sketch <code class='latex inline'>g(x)</code> and <code class='latex inline'>h(x)</code>.</p><p><code class='latex inline'>f(x) = x^2, g(x) = (\frac{1}{4}x)^2, h(x) = (-4x^2)</code></p>
Similar Question 3
<p>Describe the transformations you would apply to the graph of <code class='latex inline'>y=x^2</code>, in the order you would apply them, to obtain the graph of each quadratic relation.</p><p><code class='latex inline'>y=(x+5)^2</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>For the set of functions, transform the graph of <code class='latex inline'>f(x)</code> to sketch <code class='latex inline'>g(x)</code> and <code class='latex inline'>h(x)</code>.</p><p><code class='latex inline'>f(x) = x^2, g(x) = (\frac{1}{4}x)^2, h(x) = (-4x^2)</code></p>
<p>Sketch a graph of each quadratic relation. Pick the graph that&#39;s closest to your graph.</p><p><code class='latex inline'>y=(x-3)^2</code></p>
<p>For each function <code class='latex inline'>g(x)</code>, identify the base function as one of <code class='latex inline'>f(x)=x</code>, <code class='latex inline'>f(x)=x^2</code>, <code class='latex inline'>f(x)=\sqrt{x}</code>, and <code class='latex inline'>\displaystyle{f(x)=\frac{1}{x}}</code> and describe the transformation first in the form <code class='latex inline'>y=f(x-d)+c</code> and then in words. Transform the graph of <code class='latex inline'>f(x)</code> to sketch the graph of <code class='latex inline'>g(x)</code> and then state the domain and range of each function.</p><p><code class='latex inline'>g(x)=(x-6)^2</code></p>
<p>Sketch graphs of these four quadratic relations on the same set of axes. </p><p>a) <code class='latex inline'> y= (x+2)^2</code></p><p>b) <code class='latex inline'> y = (x-3)^2</code></p><p>c) <code class='latex inline'> y = -(x+5)^2</code></p><p>d) <code class='latex inline'> y = -(x-4)^2</code></p>
<p>Describe the transformations you would apply to the graph of <code class='latex inline'>y=x^2</code>, in the order you would apply them, to obtain the graph of each quadratic relation.</p><p><code class='latex inline'>y=(x+5)^2</code></p>
<p>Sketch a graph of each quadratic relation. Pick the graph that&#39;s closest to your graph. State the transformation mapping.</p> <ul> <li><code class='latex inline'>y=(x-3)^2</code></li> </ul>
<p>Sketch the graph of each parabola. Label at least three points on the parabola. Describe the transformation from the graph of <code class='latex inline'>y =x^2</code>.</p><p><code class='latex inline'>\displaystyle y =(x + 3)^2 </code></p>
<p>Sketch a graph of each quadratic relation. Pick the graph that&#39;s closest to your graph. State the transformation mapping.</p> <ul> <li><code class='latex inline'>y=(x-3)^2</code></li> </ul>
<p>Sketch a graph of each quadratic relation. Pick the graph that&#39;s closest to your graph. State the transformation mapping.</p> <ul> <li><code class='latex inline'>y=2(x-3)^2</code></li> </ul>
<p>Sketch a graph of each quadratic relation. Pick the graph that&#39;s closest to your graph. State the transformation mapping.</p> <ul> <li><code class='latex inline'>y=(x+5)^2</code></li> </ul>
<p>Sketch the graph of each quadratic relation by hand. Start with a sketch of <code class='latex inline'>y=x^2</code>, and then apply the appropriate transformations in the correct order.</p><p><code class='latex inline'>y=-(x-2)^2</code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! 👉
Save videos to My Cheatsheet for later, for easy studying.