3. Q3d
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>For each function <code class='latex inline'>g(x)</code>, identify the base function as one of <code class='latex inline'>f(x)=x</code>, <code class='latex inline'>f(x)=x^2</code>, <code class='latex inline'>f(x)=\sqrt{x}</code>, and <code class='latex inline'>\displaystyle{f(x)=\frac{1}{x}}</code> and describe the transformation first in the form <code class='latex inline'>y=f(x-d)+c</code> and then in words. Transform the graph of <code class='latex inline'>f(x)</code> to sketch the graph of <code class='latex inline'>g(x)</code> and then state the domain and range of each function.</p><p><code class='latex inline'>g(x)=(x-6)^2</code></p>
Similar Question 2
<p> For each quadratic relation, state</p><p>i) the coordinates of the vertex ii) the equation of the axis of symmetry iii) the direction of opening iv) the y—intercept</p><p>Then, sketch a graph of the relation.</p><p><code class='latex inline'>\displaystyle y = 2(x + 1)^2 -3 </code></p>
Similar Question 3
<p>Graph each function. State the direction of opening, the vertex, and the equation of the axis of symmetry. </p><p><code class='latex inline'> \displaystyle f(x) = -\frac{1}{2}x^2 + 4 </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Graph the function. </p><p> <code class='latex inline'>f(x) = -3(x -2)^2 + 5</code>.</p>
<p>Graph each function.</p><p><code class='latex inline'>\displaystyle y=3 x^{2}+3 </code></p>
<p>For the set of functions, transform the graph of <code class='latex inline'>f(x)</code> to sketch <code class='latex inline'>g(x)</code> and <code class='latex inline'>h(x)</code>.</p><p><code class='latex inline'>f(x) = x^2, g(x) = (\frac{1}{4}x)^2, h(x) = (-4x^2)</code></p>
<p> For each quadratic relation, state</p><p>i) the coordinates of the vertex ii) the equation of the axis of symmetry iii) the direction of opening iv) the y—intercept</p><p>Then, sketch a graph of the relation.</p><p><code class='latex inline'>\displaystyle y = - \frac{5}{3}(x -3)^2 + 1 </code></p>
<p> For each quadratic relation, state</p><p>i) the coordinates of the vertex ii) the equation of the axis of symmetry iii) the direction of opening iv) the y—intercept</p><p>Then, sketch a graph of the relation.</p><p><code class='latex inline'>\displaystyle y = 2(x + 1)^2 -3 </code></p>
<p>Determine the vertex and the direction of opening for each quadratic function. Then state the number of zeros.</p><p><code class='latex inline'> \displaystyle f(x) = 3(x + 2)^2 </code></p>
<p>Graph each function. State the direction of opening, the vertex, and the equation of the axis of symmetry. </p><p><code class='latex inline'> \displaystyle f(x) = -\frac{1}{2}x^2 + 4 </code></p>
<p>Sketch a graph of each quadratic relation. Pick the graph that&#39;s closest to your graph.</p><p><code class='latex inline'>y=(x-3)^2</code></p>
<p>For each function <code class='latex inline'>g(x)</code>, identify the base function as one of <code class='latex inline'>f(x)=x</code>, <code class='latex inline'>f(x)=x^2</code>, <code class='latex inline'>f(x)=\sqrt{x}</code>, and <code class='latex inline'>\displaystyle{f(x)=\frac{1}{x}}</code> and describe the transformation first in the form <code class='latex inline'>y=f(x-d)+c</code> and then in words. Transform the graph of <code class='latex inline'>f(x)</code> to sketch the graph of <code class='latex inline'>g(x)</code> and then state the domain and range of each function.</p><p><code class='latex inline'>g(x)=(x-6)^2</code></p>
<p>A parabola has equation <code class='latex inline'>y=(x+2)^2</code></p> <ul> <li>Identify the coordinates of the vertex.</li> </ul>
<p> For each parabola:</p> <ul> <li>i) State the coordinates of the vertex.</li> <li>ii) State the y-intercept (this is when <code class='latex inline'>x = 0</code>)</li> </ul> <p><code class='latex inline'>\displaystyle y = 2(x + 3)^2 - 8 </code></p>
<p>Sketch graphs of these four quadratic relations on the same set of axes. </p><p>a) <code class='latex inline'> y= (x+2)^2</code></p><p>b) <code class='latex inline'> y = (x-3)^2</code></p><p>c) <code class='latex inline'> y = -(x+5)^2</code></p><p>d) <code class='latex inline'> y = -(x-4)^2</code></p>
<p>Describe the transformations you would apply to the graph of <code class='latex inline'>y=x^2</code>, in the order you would apply them, to obtain the graph of each quadratic relation.</p><p><code class='latex inline'>y=(x+5)^2</code></p>
<p>Create a table of values for each quadratic relation, and sketch its graph. Then determine</p> <ul> <li>i) the equation of the axis of symmetry</li> <li>ii) the coordinates of the vertex</li> <li>iii) the y-intercept</li> <li>iv) the zeros</li> <li>v) the maximum or minimum value</li> </ul> <p><code class='latex inline'>y=x^2+2</code></p>
<p>Sketch a graph of each quadratic relation. Pick the graph that&#39;s closest to your graph. State the transformation mapping.</p> <ul> <li><code class='latex inline'>y=(x-3)^2</code></li> </ul>
<p> For each parabola:</p> <ul> <li>i) State the coordinates of the vertex.</li> <li>ii) State the y-intercept (this is when <code class='latex inline'>x = 0</code>)</li> </ul> <p><code class='latex inline'>\displaystyle y = -4(x - 2)^2 - 8 </code></p>
<p>Sketch the graph of each parabola. Label at least three points on the parabola. Describe the transformation from the graph of <code class='latex inline'>y =x^2</code>.</p><p><code class='latex inline'>\displaystyle y =(x + 3)^2 </code></p>
<p>Graph each function. State the direction of opening, the vertex, and the equation of the axis of symmetry. </p><p><code class='latex inline'> \displaystyle f(x) = -(x + 3)^2 - 4 </code></p>
<p>Sketch a graph of each quadratic relation. Pick the graph that&#39;s closest to your graph. State the transformation mapping.</p> <ul> <li><code class='latex inline'>y=(x-3)^2</code></li> </ul>
<p>Sketch a graph of each quadratic relation. Pick the graph that&#39;s closest to your graph. State the transformation mapping.</p> <ul> <li><code class='latex inline'>y=2(x-3)^2</code></li> </ul>
<p>Sketch the following and describe the transformation from <code class='latex inline'>y = x^2</code>.</p><p><code class='latex inline'>\displaystyle y = - (x - 3)^2 + 1 </code></p>
<p>Sketch a graph of each quadratic relation. Pick the graph that&#39;s closest to your graph. State the transformation mapping.</p> <ul> <li><code class='latex inline'>y=(x+5)^2</code></li> </ul>
<p>Sketch the following and describe the transformation from <code class='latex inline'>y = x^2</code>.</p><p><code class='latex inline'>\displaystyle y = - (x - 2)^2 - 3 </code></p>
<p>Sketch the graph of each quadratic relation by hand. Start with a sketch of <code class='latex inline'>y=x^2</code>, and then apply the appropriate transformations in the correct order.</p><p><code class='latex inline'>y=-(x-2)^2</code></p>
<p>Graph each function.</p><p><code class='latex inline'>\displaystyle y=-(x+1)^{2}+1 </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! 👉
Save videos to My Cheatsheet for later, for easy studying.