3. Q3e
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p> Find the location of the vertex for the following parabolas and state the maximum or minimum value. Sketch the graph.</p><p><code class='latex inline'>\displaystyle y = 2(x - 6)^2 + 3 </code></p>
Similar Question 2
<p>Sketch a graph of each quadratic relation. Pick the graph that&#39;s closest to your graph. State the transformation mapping.</p> <ul> <li><code class='latex inline'>y=(x-5)^2+3</code></li> </ul>
Similar Question 3
<p> Write and sketch the curve that satisfies <strong>all</strong> of the following conditions.</p> <ul> <li>i)The parabola has vertical shift of <code class='latex inline'>-3</code> from the origin</li> <li>ii)The parabola has horizontal shift of <code class='latex inline'>5</code> from the origin</li> <li>iii) The parabola passes through <code class='latex inline'>(0, -8)</code></li> </ul>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Find the location of the vertex for the following parabolas by converting it into proper vertex form. State the max or min value. Sketch the graph.</p><p><code class='latex inline'>\displaystyle y = -2(6x - 12)^2 - 1 </code></p>
<p> Find the location of the vertex for the following parabolas by converting it into proper vertex form. State the max or min value. Sketch the graph.</p><p><code class='latex inline'>\displaystyle y = -2(4 - 3x)^2 + 3 </code></p>
<p> Find the location of the vertex for the following parabolas by converting it into proper vertex form. State the max or min value. Sketch the graph.</p><p><code class='latex inline'>\displaystyle y = -2(2 - 3x)^2 - 1 </code></p>
<p>Find the location of the vertex for the following parabolas by converting it into proper vertex form. State the max or min value. Sketch the graph.</p><p><code class='latex inline'>\displaystyle y = -\frac{1}{16}(4x + 16)^2 + 2 </code></p>
<p>State the vertex and the axis of symmetry of each parabola.</p><p><strong>a)</strong> <code class='latex inline'>y=x^2+5</code></p><p><strong>b)</strong> <code class='latex inline'>y=(x-3)^2</code></p><p><strong>c)</strong> <code class='latex inline'>y=-3x^2</code></p><p><strong>d)</strong> <code class='latex inline'>y=(x+7)^2</code></p><p><strong>e)</strong> <code class='latex inline'>\displaystyle{y=\frac{1}{2}x^2}</code></p><p><strong>f)</strong> <code class='latex inline'>y=(x+6)^2+12</code></p>
<p>Sketch a graph of each quadratic relation. Pick the graph that&#39;s closest to your graph. State the transformation mapping.</p> <ul> <li><code class='latex inline'>y=(x-5)^2+3</code></li> </ul>
<p>Find the location of the vertex for the following parabolas by converting it into proper vertex form. State the max or min value. Sketch the graph.</p><p><code class='latex inline'>\displaystyle y = 2(5x - 10)^2 </code></p>
<p>Find the location of the vertex for the following parabolas by converting it into proper vertex form. State the max or min value. Sketch the graph.</p><p><code class='latex inline'>\displaystyle y = (2x - 2)^2 + 1 </code></p>
<p> Find the location of the vertex for the following parabolas by converting it into proper vertex form. State the max or min value. Sketch the graph.</p><p><code class='latex inline'>\displaystyle y = (3- x)^2 + 2 </code></p>
<p> Find the location of the vertex for the following parabolas and state the maximum or minimum value. Sketch the graph.</p><p><code class='latex inline'>\displaystyle y = -2(x - 3)^2 - 11 </code></p>
<p> Find the location of the vertex for the following parabolas and state the maximum or minimum value. Sketch the graph.</p><p><code class='latex inline'>\displaystyle y = 2(x - 6)^2 + 3 </code></p>
<p> Write and sketch the curve that satisfies <strong>all</strong> of the following conditions.</p> <ul> <li>i)The parabola has vertical shift of <code class='latex inline'>-3</code> from the origin</li> <li>ii)The parabola has horizontal shift of <code class='latex inline'>5</code> from the origin</li> <li>iii) The parabola passes through <code class='latex inline'>(0, -8)</code></li> </ul>
<p>Sketch a graph of each quadratic relation. Pick the graph that&#39;s closest to your graph. State the transformation mapping.</p> <ul> <li><code class='latex inline'>y=(x+1)^2-2</code></li> </ul>
<p> Find the location of the vertex for the following parabolas and state the maximum or minimum value. Sketch the graph.</p><p><code class='latex inline'>\displaystyle y = (x - 2)^2 + 2 </code></p>
<p> Find the location of the vertex for the following parabolas by converting it into proper vertex form. State the max or min value. Sketch the graph.</p><p><code class='latex inline'>\displaystyle y = 2(5 -x)^2 + 1 </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! 👉
Save videos to My Cheatsheet for later, for easy studying.