5. Q5b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Use partial factoring to determine the vertex of each function. State if the vertex is a minimum or a maximum.</p><p><code class='latex inline'>f(x) = 0.3x^2 - 3x + 6</code></p>
Similar Question 2
<p>Graph <code class='latex inline'>y = -x^2 + 6x</code> to determine</p><p>a) the equation of the axis of symmetry</p><p>b) the coordinates of the vertex</p><p>c) the y—intercept</p><p>d) the zeros</p>
Similar Question 3
<p>For the quadratic relation,</p> <ul> <li>i) use partial factoring to determine two points that are the same distance from the axis of symmetry</li> <li>ii) determine the coordinates of the vertex</li> <li>iii) express the relation in vertex form</li> <li>iv) sketch the graph</li> </ul> <p><code class='latex inline'>\displaystyle{y=-\frac{1}{2}x^2+2x-3}</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Without graphing, determine the number of x-intercepts that the relation has.</p><p><code class='latex inline'>\displaystyle y = 2x(x - 5) + 7 </code></p>
<p>Use partial factoring to determine the vertex form of the quadratic relation <code class='latex inline'>y=2x^2-10x+11</code></p>
<p>Determine the maximum or minimum value. Use at least two different methods.</p><p><code class='latex inline'> \displaystyle y = -3x^2 - 12x + 15 </code></p>
<p>Graph <code class='latex inline'>y = -x^2 + 6x</code> to determine</p><p>a) the equation of the axis of symmetry</p><p>b) the coordinates of the vertex</p><p>c) the y—intercept</p><p>d) the zeros</p>
<p>Use graphing technology to graph the parabola for each relation below. Then determine</p> <ul> <li>i) the x—intercepts</li> <li>ii) the equation of the axis of symmetry </li> <li>iii) the coordinates of the vertex</li> </ul> <p><code class='latex inline'> \displaystyle y = 6x^2 + 15x </code></p>
<p>The points <code class='latex inline'>(-3, 8)</code> and <code class='latex inline'>(9, 8)</code> lie on opposite sides of a parabola. Determine the equation of the axis of symmetry.</p>
<p>Each pair of points is located on opposite sides of the same parabola. Determine the equation of the axis of symmetry for each parabola.</p><p> <code class='latex inline'>(-5.25,-2.5),(3.75,-2.5)</code></p>
<p>Use partial factoring to determine the vertex of each function. State if the vertex is a minimum or a maximum.</p><p><code class='latex inline'>f(x) = 0.3x^2 - 3x + 6</code></p>
<p>Use partial factoring to determine the vertex of each function. State if the vertex is a minimum or a maximum.</p><p><code class='latex inline'>\displaystyle f(x)=4 x^{2}-8 x+1 </code></p>
<p>Each pair of points is located on opposite sides of the same parabola. Determine the equation of the axis of symmetry for each parabola.</p><p> <code class='latex inline'>(3,2),(9,2)</code></p>
<p>Write each quadratic relation in vertex form using an appropriate strategy.</p><p><code class='latex inline'>\displaystyle y = x(3x + 12) + 2 </code></p>
<p>For the quadratic relation,</p> <ul> <li>i) use partial factoring to determine two points that are the same distance from the axis of symmetry</li> <li>ii) determine the coordinates of the vertex</li> <li>iii) express the relation in vertex form</li> <li>iv) sketch the graph</li> </ul> <p> <code class='latex inline'>y=2x^2-10x+11</code></p>
<p>Each pair of points is located on opposite sides of the same parabola. Determine the equation of the axis of symmetry for each parabola.</p><p><code class='latex inline'>(-18,3),(7,3)</code></p>
<ol> <li>Use partial factoring to determine the vertex of each function. State if the vertex is a minimum or a maximum.</li> </ol> <p>c) <code class='latex inline'>\displaystyle f(x)=-\frac{1}{2} x^{2}-4 x-3 </code></p>
<p>Use partial factoring to determine the vertex of each function. State if the vertex is a minimum or a maximum.</p><p><code class='latex inline'>f(x) = -0.2x^2 - 2.8x -5.4</code></p>
<ul> <li>i) determine the coordinates of two points on the graph that are the same distance from the axis of symmetry</li> <li>ii) determine the equation of the axis of symmetry </li> <li>iii) determine the coordinates of the vertex</li> <li>iv) write the relation in vertex form</li> </ul> <p> <code class='latex inline'>y=x(x-6)-8</code></p>
<p>Use graphing technology to graph the parabola for each relation below. Then determine</p> <ul> <li>i) the x—intercepts</li> <li>ii) the equation of the axis of symmetry </li> <li>iii) the coordinates of the vertex</li> </ul> <p><code class='latex inline'> \displaystyle y = -x^2 + 18x </code></p>
<ol> <li>Use partial factoring to determine the vertex of each function. State if the vertex is a minimum or a maximum.</li> </ol> <p>d) <code class='latex inline'>\displaystyle f(x)=\frac{4}{7} x^{2}-\frac{8}{7} x+\frac{25}{7} </code></p>
<p>Determine the maximum or minimum value. Use at least two different methods.</p><p><code class='latex inline'> \displaystyle y = 2x^2 + 12x </code></p>
<p>Which equation is the vertex form of the quadratic relation <code class='latex inline'>\displaystyle y=2 x(x-6)-5 ? </code></p><p>A. <code class='latex inline'>\displaystyle y=2(x-3)^{2}-23 </code></p><p>B. <code class='latex inline'>\displaystyle y=2(x-6)^{2}-5 </code></p><p>C. <code class='latex inline'>\displaystyle y=2(x-3)^{2}-5 </code></p><p>D. <code class='latex inline'>\displaystyle y=2(x-3)^{2}+23 </code></p>
<p>Use partial factoring to determine the vertex of each function. State if the vertex is a minimum or a maximum.</p><p><code class='latex inline'>f(x) = \frac{1}{2}x^2 - 3x + 8</code></p>
<p>For the quadratic relation,</p> <ul> <li>i) use partial factoring to determine two points that are the same distance from the axis of symmetry</li> <li>ii) determine the coordinates of the vertex</li> <li>iii) express the relation in vertex form</li> <li>iv) sketch the graph</li> </ul> <p><code class='latex inline'>y=x^2-6x+5</code></p>
<p>Use partial factoring to determine the vertex of each function. State if the vertex is a minimum or a maximum.</p><p><code class='latex inline'>f(x) = 3x^2 -6x + 11</code></p>
<ol> <li>Use partial factoring to determine the vertex of each function. State if the vertex is a minimum or a maximum.</li> </ol> <p>f) <code class='latex inline'>\displaystyle f(x)=-0.4 x^{2}+4 x+1 </code></p>
<p>Determine the maximum or minimum value. Use at least two different methods.</p><p><code class='latex inline'> \displaystyle y = 3x(x - 2) + 5 </code></p>
<p>For the quadratic relation,</p> <ul> <li>i) use partial factoring to determine two points that are the same distance from the axis of symmetry</li> <li>ii) determine the coordinates of the vertex</li> <li>iii) express the relation in vertex form</li> <li>iv) sketch the graph</li> </ul> <p><code class='latex inline'>y=-x^2-6x-13</code></p>
<ul> <li>i) determine the coordinates of two points on the graph that are the same distance from the axis of symmetry</li> <li>ii) determine the equation of the axis of symmetry </li> <li>iii) determine the coordinates of the vertex</li> <li>iv) write the relation in vertex form</li> </ul> <p><code class='latex inline'>y=x(3x+12)+2</code></p>
<p>For the quadratic relation,</p> <ul> <li>i) use partial factoring to determine two points that are the same distance from the axis of symmetry</li> <li>ii) determine the coordinates of the vertex</li> <li>iii) express the relation in vertex form</li> <li>iv) sketch the graph</li> </ul> <p><code class='latex inline'>\displaystyle{y=-\frac{1}{2}x^2+2x-3}</code></p>
<ol> <li>Two points on a parabola are <code class='latex inline'>\displaystyle (4,-1) </code> and <code class='latex inline'>\displaystyle (-10,-1) </code>. What is the equation of the axis of symmetry?</li> </ol>
<p>For the quadratic relation,</p> <ul> <li>i) use partial factoring to determine two points that are the same distance from the axis of symmetry</li> <li>ii) determine the coordinates of the vertex</li> <li>iii) express the relation in vertex form</li> <li>iv) sketch the graph</li> </ul> <p><code class='latex inline'>y=-2x^2+12x-11</code></p>
<p>Find </p> <ul> <li>i. the equation of the axis of symmetry</li> <li>ii. the coordinates of the vertex</li> <li>iii. the y-intercept</li> <li>iv. the zeros</li> </ul> <p>for </p><p><code class='latex inline'> \displaystyle y = x^2 -8x </code></p>
<ol> <li>Use partial factoring to determine the vertex of each function. State if the vertex is a minimum or a maximum.</li> </ol> <p>b) <code class='latex inline'>\displaystyle f(x)=-3 x^{2}-18 x-25 </code></p>
<p>Determine the maximum or minimum value. Use at least two different methods.</p><p><code class='latex inline'> \displaystyle f(x) = x^2 - 8x + 12 </code></p>
<p>Use partial factoring to determine the vertex of each function. State if the vertex is a minimum or a maximum.</p><p><code class='latex inline'>f(x) = -\frac{5}{3}x^2 + 5x - 10</code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! 👉
Save videos to My Cheatsheet for later, for easy studying.