5. Q5c
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Sketch each parabola. Label the x-intercepts and vertex.</p><p> <code class='latex inline'> \displaystyle y = (x - 6)(x -2) </code></p>
Similar Question 2
<ul> <li>i) determine the coordinates of two points on the graph that are the same distance from the axis of symmetry</li> <li>ii) determine the equation of the axis of symmetry </li> <li>iii) determine the coordinates of the vertex</li> <li>iv) write the relation in vertex form</li> </ul> <p><code class='latex inline'>y=-2(x+3)(x-7)</code></p>
Similar Question 3
<p>Find the x-intercepts and vertex.</p><p><code class='latex inline'> \displaystyle y = (x + \frac{1}{2})(x - \frac{7}{4}) </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Find the x-intercepts and vertex.</p><p><code class='latex inline'> \displaystyle y = (x + \frac{1}{2})(x - \frac{7}{4}) </code></p>
<p><code class='latex inline'>\displaystyle y=a(x-2)(x+4) </code></p><p>In the quadratic equation above, <code class='latex inline'>\displaystyle a </code> is a nonzero constant. The graph of the equation in the <code class='latex inline'>\displaystyle x y </code> -plane is a parabola with vertex <code class='latex inline'>\displaystyle (c, d) . </code> Which of the following is equal to <code class='latex inline'>\displaystyle d </code> ?</p><p>A) <code class='latex inline'>\displaystyle -9 a </code></p><p>B) <code class='latex inline'>\displaystyle -8 a </code></p><p>C) <code class='latex inline'>\displaystyle -5 a </code></p><p>D) <code class='latex inline'>\displaystyle -2 a </code></p>
<ul> <li>i) determine the coordinates of two points on the graph that are the same distance from the axis of symmetry</li> <li>ii) determine the equation of the axis of symmetry </li> <li>iii) determine the coordinates of the vertex</li> <li>iv) write the relation in vertex form</li> </ul> <p><code class='latex inline'>y=-2(x+3)(x-7)</code></p>
<p>Find the x-intercepts and vertex.</p><p> <code class='latex inline'> \displaystyle y = 3x(x +2) </code></p>
<p>Examine the relation <code class='latex inline'>y = x^2+7x +12</code>.</p><p>a) Write the relation in factored form.</p><p>b) Determine the coordinates of the x—intercepts.</p><p>c) Determine the coordinates of the vertex.</p><p>d) State the minimum value of the relation and where the minimum value occurs.</p>
<p> Find the location of the vertex for the following parabolas using symmetry and the x-intercepts.</p><p><code class='latex inline'>\displaystyle y = (x + 6)(x - 6) </code></p>
<p>Sketch each parabola. Label the x-intercepts and vertex.</p><p> <code class='latex inline'> \displaystyle y = (x - 6)(x -2) </code></p>
<ul> <li>i) determine the coordinates of two points on the graph that are the same distance from the axis of symmetry</li> <li>ii) determine the equation of the axis of symmetry </li> <li>iii) determine the coordinates of the vertex</li> <li>iv) write the relation in vertex form</li> </ul> <p> <code class='latex inline'>y=(x-1)(x+7)</code></p>
<p>A parabola is defined by the equation <code class='latex inline'>y = 2x^2 - 11x + 5</code>. Find the location of the vertex.</p>
<p>Determine an equation in the form <code class='latex inline'>y = a(x - r)(x - s) </code> to represent each parabola. Consider the vertex and <code class='latex inline'>x</code>-intercepts.</p><img src="/qimages/783" />
<p>Sketch each parabola. Label the x-intercepts and vertex.</p><p> <code class='latex inline'> \displaystyle y = -(x +3)(x + 7) </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! 👉
Save videos to My Cheatsheet for later, for easy studying.