6. Q6b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Solve <code class='latex inline'>\log_6x+\log_6(x-5)=2</code>. Check for inadmissible roots.</p>
Similar Question 2
<p>Determine the coordinates of the points of intersection of the graphs of <code class='latex inline'>y = \log_{10}(x -2)</code> and <code class='latex inline'>y =1 - \log_{10}(x + 1)</code>.</p>
Similar Question 3
<p>Solve <code class='latex inline'>\log_6x+\log_6(x-5)=2</code>. Check for inadmissible roots.</p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Find all values of <code class='latex inline'>x</code> such that <code class='latex inline'> \log_5(x -2) + \log_5(x-6) = 2</code>.</p>
<p>Determine the coordinates of the points of intersection of the graphs of <code class='latex inline'>y = \log_{10}(x -2)</code> and <code class='latex inline'>y =1 - \log_{10}(x + 1)</code>.</p>
<p>Solve.</p><p>d) <code class='latex inline'>\log_4x-\log_42=2</code></p>
<p>Solve.</p><p><code class='latex inline'>\displaystyle{\log_52x+\frac{1}{2}\log_59=2}</code></p>
<p>Solve <code class='latex inline'>\log_6x+\log_6(x-5)=2</code>. Check for inadmissible roots.</p>
<p>Solve.</p><p><code class='latex inline'>\log_7(x+1)+\log_7(x-5)=1</code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.