10. Q10b
8 Math AW / 1.4 / 10. Q10b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Video not available! See below for lectures and more practice questions!
Similar Question 1
<p> Add the following numbers keeping in mind of the number properties we discussed in class.</p><p><code class='latex inline'> \displaystyle 234 + 75 + 5 - 235 </code></p>
Similar Question 2
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{1}{3}\times2 + \frac{1}{6} </code></p>
Similar Question 3
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle 3 \cdot 4-8 \div 2 </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (6 + (-8))\times 2 </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle \begin{array}{llllll} &(a) &\frac{2 - 8 }{8 - 2} &(b) & (5- 3) \div (5 + 3) \\ &(c) & \frac{20 -7}{ 7 - 20} &(d) & \frac{21 - 4}{4 - 21} \div (4 -21)\\ \end{array} </code></p>
<p>Evaluate the following using order of operations. Show your steps.</p><p><code class='latex inline'> \displaystyle \begin{array}{ccccccc} &(a) &3 + 3\times 3 &(b)& 12 - 3\times 3 \end{array} </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle 1 - \frac{5}{8} \div{1}{4} </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 3^{5}-\left(1+10^{2}\right) </code></p>
<p>Evaluate each expression.</p><p><code class='latex inline'>\frac{38-12}{2\cdot13}</code></p>
<p> Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{5}{30} + \frac{4}{20}\times 10 </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 30-14 \div 2 </code></p>
<p>Solve each equation.</p><p><code class='latex inline'>\displaystyle m=\frac{3^{2}+4}{7-5} </code></p>
<p>Use grouping symbols to make the equation true.</p><p><code class='latex inline'>\displaystyle 4^{2}-5 \cdot 2+1=1 </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 18 \div 9+2 \cdot 6 </code></p>
<p>Evaluate the following using order of operations. Show your steps.</p><p><code class='latex inline'> \displaystyle \begin{array}{ccccccc} &(c) & 125 - 24\times 2 &(d)& 81 - 9\times 8 \end{array} </code></p>
<p>Evaluate each expression. Name the property used in each step. <code class='latex inline'>\displaystyle 6 \cdot \frac{1}{6}+5(12 \div 4-3) </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle {1}\div \frac{5}{15} + \frac{2}{5} </code></p>
<img src="/qimages/12427" /><p>Error Analysis A student simplifies an expression as shown below. Find the error and simplify the expression correctly.</p>
<p>Using brackets, group the terms in this expression to get the least possible result.</p><p><code class='latex inline'>\displaystyle 40 \times 6 - 3 \times 4 -5 </code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle (7+1) 9 </code></p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 10 + 2 \times 3^2 -2 = 106 </code></p>
<p>Calculate </p><p><code class='latex inline'>\displaystyle -8 \times 6 \div (-2) - [-9 \times (-3)] </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle \left(3-4^{2}\right)^{2}+8 </code></p>
<p>Evaluate mentally.</p><p><code class='latex inline'>\displaystyle \frac{10-1}{5-2} </code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle 3.2 \times 10^4 </code></p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 20 \div 2 + 2 \times 2^2 + 6 = 120 </code></p>
<p>Fill in the missing operation signs.</p><p><code class='latex inline'>\displaystyle -12 \bigcirc 4 \bigcirc (-3) = -24 </code></p>
<p>Evaluate. Show all the steps. </p><p><code class='latex inline'>\displaystyle\frac{(-7)(4) + 8}{(-2)^{2}}</code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 4 \times (2 + (-2) \times (-5)) </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle (2+5) 4 </code></p>
<p>Evaluate. Show all the steps. </p><p><code class='latex inline'>\displaystyle10 \div 2 + 4 \times (-3)</code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle \frac {1}{3}\times\frac{3}{7}+(\frac{6}{7} - \frac{5}{14}) </code></p>
<p>Evaluate. Remember to use the correct order of operations.</p><p><code class='latex inline'>-5(-3)^2</code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle -15+(-12)-4-(-8) </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle \left[8(2)-4^{2}\right]+7(4) </code></p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 10 + 2 \times 3^2 -2 =84 </code></p>
<p>Evaluate each expression if x=12, y=8, and z=3.</p><p><code class='latex inline'>\frac{x-z^2}{y\div x}+\frac{2y-x}{y^2\div2}</code></p>
<p>A student said: βThe sum of the squares of two numbers is equal to the square of the sum of the numbers.β</p><p>Do you agree with this statement? Justify your answer.</p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle 66.15 \div 10.5^2 </code></p>
<p> Add the following numbers keeping in mind of the number properties we discussed in class.</p><p><code class='latex inline'> \displaystyle 234 + 75 + 5 - 235 </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 25+\left[(16-3 \cdot 5)+\frac{12+3}{5}\right] </code></p>
<p>Evaluate</p><p><code class='latex inline'>\displaystyle 144 \div (36 \times 2) </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle \frac{1}{2} -\frac {1}{12}\times(\frac{1}{6} \div\frac{5}{3}) </code></p>
<p>What is the simplified form of <code class='latex inline'>\displaystyle 4+10 \div 4+6</code> ? </p><p>A. 1.4</p><p>B. 9.5</p><p>C. 12.5</p><p>D. 24</p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 2\div \frac{3}{5} + \frac{1}{12} </code></p>
<p>Calculate.</p><p><code class='latex inline'>\displaystyle \frac{(-2 + 10)}{2^2} </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (3 - 5)\times 7 - 7 </code></p>
<p>Calculate</p><p><code class='latex inline'>\displaystyle \frac{-6 + (-10)}{(-4)(2)} </code></p>
<p>Evaluate the expression. Then write the expressions in order from greatest to least.</p><p><code class='latex inline'>\displaystyle (7.5 + 1)^2, (10.5-1)^2, 61.5+2^2, 103.5 -1^2 </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{5}{27}\times 3 + \frac{5}{36} </code></p>
<p> Add the following numbers keeping in mind of the number properties we discussed in class.</p><p><code class='latex inline'> \displaystyle 23 - 1 + 6 - 20 </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{1}{24} \times2- \frac{1}{6} </code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle 3 \cdot 4-8 \div 2 </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 3 + 3^3 \times 2 </code></p>
<p>Simplify. Use integer tiles when they help. The first part has been done for you.</p><p><code class='latex inline'>\displaystyle 4+(-3)-(-5)+(+3)-6 </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 10+8^{3} \div 16 </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 3\left[4-8+4^{2}(2+5)\right] </code></p>
<p>Evaluate. </p><p><code class='latex inline'> 3 ^ {-2} + 3 ^ {0}</code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 35-3 \cdot 8 </code></p>
<p> Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{1}{2}\times (\frac{2}{5} - \frac{3}{40}) </code></p>
<p>Solve each equation.</p><p><code class='latex inline'>\displaystyle x=\frac{27+3}{10} </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 4- 2\times(5 -2) </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 108 \div\left[3\left(9+3^{2}\right)\right] </code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle 9 \div(-3)-2 </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 2^2 + 4- 3\times2^2 </code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle 20.8 \div 1.3 \times (14.8 + 17.2) </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'>\displaystyle 2 + 3\times2^2 </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle \left[\left(6^{3}-9\right) \div 23\right] 4 </code></p>
<p> Add the following numbers keeping in mind of the number properties we discussed in class.</p><p><code class='latex inline'> \displaystyle 239 - 12 - 240 + 11 </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle \frac{5 - 3 \times(3 + 5)}{5}\times 5 </code></p>
<p>Evaluate. State which operation you do first. </p><p><code class='latex inline'>\displaystyle(+7)(+4) - (+5)</code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle 8 \cdot(-3)+4 </code></p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 10 + 2 \times 3^2 -2 = 24 </code></p>
<p>Evaluate. Show all the steps. </p><p><code class='latex inline'>\displaystyle-2(5 + 3)</code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (34 - 82)\div(82 - 34) </code></p>
<p>Calculate </p><p><code class='latex inline'>\displaystyle - 8 \times (-3) - (-8) \div (-4) </code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle -15+8 \times 7-32 \div 16 </code></p>
<p>Write your birth date in this form: year/month/date.</p><p>Use the digits in this number in the order they are written to make an equation.</p><p>For example, if your birth date is April 15, 1992, write it as 92/04/15, then use the number 9, 2, 0, 4, 1, 5: </p><p><code class='latex inline'>\displaystyle 9 \times (2 \times 0) = ( 4+ 1) - 5 </code></p>
<p>Where can you place brackets to make this equation true?</p><p><code class='latex inline'>\frac{3}{5}+\frac{1}{4}\div\frac{2}{3}+\frac{1}{3}=\frac{193}{120}</code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 29-3(9-4) </code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle 18.3 - (7.2 -3.5)^2 </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 3\times\frac{5}{39} + \frac{4}{13} </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (5- 3) \times 3\times (-2) </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{1}{3}\times2 + \frac{1}{6} </code></p>
<p>Evaluate each expression. Name the property used in each step. <code class='latex inline'>\displaystyle 3(22-3 \cdot 7) </code></p>
<p>Express each rational number in lowest terms.</p><p><code class='latex inline'>\displaystyle -\frac{3}{9} </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle 1\div 21 -\frac{4}{7} </code></p>
<p>Evaluate. Remember to use the correct order of operations.</p><p><code class='latex inline'>2^4-2^2+2^3</code></p>
<p>Evaluate. Remember to use the correct order of operations.</p><p><code class='latex inline'>2^4+2^2-2^3</code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle 5(3 \cdot 5-4) </code></p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 20 \div 2 + 2 \times 2^2 + 6 = 8 </code></p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 20 \div 2 + 2 \times 2^2 + 6 = 30 </code></p>
<p>Simplify. Use integer tiles when they help. The first part has been done for you.</p><p><code class='latex inline'>\displaystyle 2(3+4)-3(7+2)+(-2+5) </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 24 \div 6+2^{3} \cdot 4 </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 4 \times (3 + (-2) \times (-5)) </code></p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 20 \div 2 + 2 \times 2^2 + 6 = 26 </code></p>
<p>Evaluate. State which operation you do first. </p><p><code class='latex inline'>\displaystyle(-3) + (+4)(+7)</code></p>
<p>Calculate </p><p><code class='latex inline'>\displaystyle [-2 - (-8)] \times (-5) </code></p>
<p>Evaluate. Remember to use the correct order of operations.</p><p><code class='latex inline'>4^5-4^3</code></p>
<p>Use each digit from 1 to 9 once, and any operations, to write an expression with answer 144.</p>
<p>Calculate.</p><p><code class='latex inline'>\displaystyle \frac{-5 + (-3)(-6)}{(-2)^2 + (-3)^2} </code></p>
<p>Evaluate</p><p><code class='latex inline'>\displaystyle (5 + 6) \timeso 11 </code></p>
<p>Evaluate</p><p><code class='latex inline'>\displaystyle 89 - (76 + 13) </code></p>
<p> Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{1}{2} \times (\frac{1}{2}+\frac{1}{5} ) </code></p>
<p>Evaluate mentally.</p><p><code class='latex inline'>\displaystyle \frac{1-9}{2-4} </code></p>
<p>Evaluate mentally.</p><p><code class='latex inline'>\displaystyle \frac{5-(-1)}{8-2} </code></p>
<p>Evaluate. Remember to use the correct order of operations.</p><p><code class='latex inline'>(5^2-3^2)+(5^2-3^2)</code></p>
<p>Evaluate each expression.</p><p><code class='latex inline'>15+3\cdot2</code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle (4^3-3^3) + (2^5 \div 4^2) </code></p>
<p>Evaluate mentally.</p><p><code class='latex inline'>\displaystyle \frac{-3-(-2)}{-2-(-1)} </code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle -3+5 \times(-1) </code></p>
<p>Calculate </p><p><code class='latex inline'>\displaystyle -3 - (-4) \times [2 \times (-6)] </code></p>
<p>Evaluate. </p><p><code class='latex inline'> 2^ {-3} + 3^ {-2}</code></p>
<p>Evaluate mentally.</p><p><code class='latex inline'>\displaystyle \frac{5-(-1)}{-3-(-1)} </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle \frac{2 \cdot 8^{2}-2^{2} \cdot 8}{2 \cdot 8} </code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle -3(9+11) </code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle 1-(1-5)^{2} \div(-8) </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (4 - 5)^2 \times 2 \div 2^2 </code></p>
<p>Evaluate</p><p><code class='latex inline'>\displaystyle (34 + 46) - 5 \times 11 </code></p>
<p>Simplify. Use integer tiles when they help. The first part has been done for you.</p><p><code class='latex inline'>\displaystyle -3+5+(-1)+2-4-2 </code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle 1 \div 2^{2}-0.54+1.26 </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle \frac{8+3^{3}}{12-7} </code></p>
<p>Fill in the missing operation signs.</p><p><code class='latex inline'>\displaystyle 36 \bigcirc (4 \bigcirc 1) \bigcirc 2 = 24 </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (5- 3) \times 3\times (-2) </code></p>
<p>Evaluate. Show all the steps. </p><p><code class='latex inline'>\displaystyle(-3)(-2) + 4</code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle \frac{(4 \cdot 3)^{2}}{9+3} </code></p>
<p>Simplify the expression.</p><p><code class='latex inline'>\displaystyle \frac{2\left[8+\left(67-2^{6}\right)^{3}\right]}{9} </code></p>
<p>Calculate </p><p>a) <code class='latex inline'>\displaystyle -9 - (-6) \div 6 </code></p><p>b) <code class='latex inline'>\displaystyle 4 \times (-8) - (-5) </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle \frac{2 \times 8- 8 }{2 - 2\times 5} </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle (11 \cdot 7)-9 \cdot 8 </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{1}{3} + \frac{7}{9} \times\frac{1}{ 3} </code></p>
<p>Evaluate</p><p><code class='latex inline'>\displaystyle 15 + 3 + 12 - 6 </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 2 + 3\times2^2 </code></p>
<p>Use four 43 and any operations or brackets to make each whole number from 1 to 10.</p>
<p>Evaluate. Remember to use the correct order of operations.</p><p><code class='latex inline'>2^3+2^4</code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle (22.3 + 1.1)^2 -(22.3-1.1)^2 </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 3\times(4 -3) </code></p>
<p>Evaluate each expression. Name the property used in each step.</p><p><code class='latex inline'>(2^5-5^2)+(4^2-2^4)</code></p>
<p>Evaluate each expression.</p><p><code class='latex inline'>(16-3)\cdot 4</code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle -5(-3)+(-8)(10) </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 23-2\left(17+3^{3}\right) </code></p>
<p>a) Evaluate with a calculator.</p><p><code class='latex inline'>\displaystyle -147 + 156 \div (-4) + 405 \div(-15) </code></p><p>b) Does your calculator follow the order of operations? Explain how you know.</p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle (12-6) \cdot 5^{2} </code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle -35 \div(-5) </code></p>
<p>Evaluate</p><p><code class='latex inline'>\displaystyle 7 \times 12 -48 </code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle (7-15) \div(4+4) </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 7^{3}-\frac{2}{3}(13 \cdot 6+9) 4 </code></p>
<p>Evaluate each expression.</p><p><code class='latex inline'>\displaystyle 6-[\frac{2+7}{3}-(2\cdot3-5)]</code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 1 - (2 - 2\times(3^2 - 2^2)) </code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle 6+4 \div 2+3 </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{5}{22}\times2 - \frac{4}{33} </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 2\times (4 - 10)\times 9 - 9\times(2 + 1) </code></p>
<p>Simplify the expression.</p><p><code class='latex inline'>\displaystyle 3\left[(4-2)^{5}-20\right] </code></p>
<p>Calculate.</p><p><code class='latex inline'>\displaystyle (-3)^2 + (-8)\div (-2) </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle (1-\frac{2}{7})\times (- \frac{2}{5}) </code></p>
<p>Use the numbers <code class='latex inline'>2, 4, 6, 8</code>, and any operations or brackets to make an expression that equals each number. Show your work.</p><p><code class='latex inline'>24</code></p>
<p>Evaluate. State which operation you do first. </p><p><code class='latex inline'>\displaystyle(+6)[(+2) + (-5)]</code></p>
<p>Evaluate mentally.</p><p><code class='latex inline'>\displaystyle \frac{6-2}{3-1} </code></p>
<p>Evaluate. Show all the steps. </p><p><code class='latex inline'>\displaystyle(-8)(-2) + (-1)</code></p>
<p> Add the following numbers keeping in mind of the number properties we discussed in class.</p><p><code class='latex inline'> \displaystyle 5423 - (23 + 5500) + 21 </code></p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 10 + 2 \times 3^2 -2 =254 </code></p>
<p> Tara and Curtis are simplifying <code class='latex inline'>\displaystyle \left[4(10)-3^{2}\right]+6(4) </code>. Is either of them correct? Explain your reasoning.</p><p>Curtis</p><p><code class='latex inline'>\displaystyle \left[4(10)-3^{2}\right]+6(4) </code></p><p><code class='latex inline'>\displaystyle =[4(10)-9]+6(4) </code></p><p><code class='latex inline'>\displaystyle =(40-9)+6(4) </code></p><p><code class='latex inline'>\displaystyle =31+6(4) </code></p><p><code class='latex inline'>\displaystyle =31+24 </code></p><p><code class='latex inline'>\displaystyle =55 </code></p><p><code class='latex inline'>\displaystyle \begin{aligned} \text { Tara } \\ \left[ 4(10)-3^{2} \right]+6(4) \\ =& [4(10)-9]+6(4) \\ =& 4(1)+6(4) \\ =& 4+6(4) \\ =& 4+24 \\ =& 28 \end{aligned} </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 4 - 4^2 \times 4 + 4 </code></p>
<p>Evaluate. Remember to use the correct order of operations.</p><p><code class='latex inline'>30(2)^3</code></p>
<p>Evaluate each expression if x = -2, y = 4, and z = -6.</p><p> <code class='latex inline'>\displaystyle \frac{2x + 7y}{z} </code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle 5 \cdot 2^{2} \div 2+8 </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle 2 - \frac{3}{4} \div 2 </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle ( \frac{1}{2} - \frac{1}{3})\times(\frac{2}{3}+\frac {2}{3}) </code></p>
<p>Calculate.</p><p><code class='latex inline'>\displaystyle -3 \times [-4 + 2^3] </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (6 - 3) \times 3 - 3 \times (-2) </code></p>
<p>Use grouping symbols to make the equation true.</p><p><code class='latex inline'>\displaystyle 9+3-2+4=6 </code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle 5^2 -6^2 \div 2^2 </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 3\times\frac{2}{9} + \frac{2}{6} </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{1}{4}\times\frac{2}{3} - \frac{1}{12} </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 5 \cdot 5-1 \cdot 3 </code></p>
<p>Evaluate the expression. Then write the expressions in order from greatest to least.</p><p><code class='latex inline'>\displaystyle 3^2, 2^3, (3-2)^2, (3 + 2)^2 </code></p>
<p>Simplify the expression.</p><p><code class='latex inline'>\displaystyle \frac{22+1^{3}+\left(3^{4}-7^{2}\right)}{2^{3}} </code></p>
<p>Calculate </p><p><code class='latex inline'>\displaystyle -16 \div [-2 -(-18)\times( -1)] </code></p>
<p>Evaluate. State which operation you do first. </p><p><code class='latex inline'>\displaystyle(+15) \div [(+10) \div (-2)]</code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 6\times\frac{3}{6} + \frac{5}{24} </code></p>
<p>Simplify. Use integer tiles when they help. The first part has been done for you.</p><p><code class='latex inline'>\displaystyle 1-(-2)+(-2)-4+2 </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle \frac{(1+6) 9}{5^{2}-4} </code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle -16 \times 6 \div(-2) </code></p>
<p> Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{3}{5} \div (\frac{1}{15}- \frac{1}{10} ) </code></p>
<p>Evaluate. </p><p><code class='latex inline'> (5+5) ^ {-2}</code></p>
<p>Evaluate. State which operation you do first. </p><p><code class='latex inline'>\displaystyle(-6) + (+4) \times (-2)</code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle 4\div11-\frac{1}{11} </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (7 + (-7))\div 14 </code></p>
<p>Laurie and Chase are evaluating <code class='latex inline'>3[4+(27 \div3)]^2</code>. Who is correct? Explain your reasoning. </p><img src="/qimages/23674" />
<p>Evaluate. State which operation you do first. </p><p><code class='latex inline'>\displaystyle(+18) \div (-6) \times (+2)</code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle 10.8 + 6.3^2 -1.2 \times 2.1 </code></p>
<p>Simplify using the exponent laws. Then, evaluate.</p><p><code class='latex inline'>3^5\times 3^2\div 3^4</code></p>
<p> Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle (\frac{3}{5} + \frac{5}{12} )\times \frac{2}{3} </code></p>
<p>Solve each equation.</p><p><code class='latex inline'>\displaystyle z=32+4(-3) </code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle 2+3(10-4)^{2} </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 12\times \frac{1}{4} + \frac{1}{3} </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 2^3 + 22 - 21\times ( 32 - 10 \times 2) </code></p>
<p> Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{3}{2}\div(\frac{2}{7} - \frac{5}{14}) </code></p>
<p>Calculate</p><p><code class='latex inline'>\displaystyle \frac{[6 + (-38)] \div 4 (-2)}{(-2 + 4)(5 -6)} </code></p>
<p>Describe how to evaluate <code class='latex inline'>8[6^2-3(2+5)] \div8+3</code>.</p>
<p>Evaluate. </p><p><code class='latex inline'> 4-4^{-1}</code></p>
<p>Simplify. Use integer tiles when they help. The first part has been done for you.</p><p><code class='latex inline'>\displaystyle -3-(-1)+(-4)+5+3-4 </code></p>
<p>Danny got an incorrect answer of 12 because he remembered his order of operations backwards. The numbers were 8, 2, and 2. The operations were subtractions and multiplication. What is the correct answer.</p>
<p>Evaluate each expression.</p><p><code class='latex inline'>(12-6)\cdot 2</code></p>
<p>Evaluate. Show all the steps. </p><p><code class='latex inline'>\displaystyle3(-4) - 2</code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle \left[2-(6+3)^{2}\right]^{2} </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle \frac{5^3}{ 11^2 + 2^2} \times 11^2 </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle \frac{11-8}{1+7 \cdot 2} </code></p>
<p>Evaluate each expression.</p><p><code class='latex inline'>5(8-3)+7\cdot2</code></p>
<p>Simplify. Use integer tiles when they help. The first part has been done for you.</p><p><code class='latex inline'>\displaystyle -4(1-4+5)-(4+3-1) </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! π
Save videos to My Cheatsheet for later, for easy studying.