7. Q7b
8 Math AW / 1.4 / 7. Q7b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p> Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{3}{5} \div (\frac{1}{15}- \frac{1}{10} ) </code></p>
Similar Question 2
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle (22.3 + 1.1)^2 -(22.3-1.1)^2 </code></p>
Similar Question 3
<p> Solve the following questions using proper order of operations. <code class='latex inline'> \displaystyle 3 - \frac{4}{3}+\frac{1}{2} </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (6 + (-8))\times 2 </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle \begin{array}{llllll} &(a) &\frac{2 - 8 }{8 - 2} &(b) & (5- 3) \div (5 + 3) \\ &(c) & \frac{20 -7}{ 7 - 20} &(d) & \frac{21 - 4}{4 - 21} \div (4 -21)\\ \end{array} </code></p>
<p>Write an algebraic expression for each verbal expression.</p><p>triple the difference of 55 and the cube of w</p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (4 - 5)^2 \times 2 \div 2^2 </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle 2 - \frac{5}{7}\div\frac{1}{3} </code></p>
<p>Evaluate</p><p><code class='latex inline'>\displaystyle (34 + 46) - 5 \times 11 </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle 1 - \frac{5}{8} \div{1}{4} </code></p>
<p>Evaluate each expression.</p><p><code class='latex inline'>\frac{38-12}{2\cdot13}</code></p>
<p>Evaluate the expression. Then write the expressions in order from greatest to least.</p><p><code class='latex inline'>\displaystyle 7^2, 2^7, 4^5, 5^4 </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle \frac{8+3^{3}}{12-7} </code></p>
<p>Evaluate each expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle (2 a+2 b)^{2} ; a=3, b=4 </code></p>
<p>Evaluate each expression if <code class='latex inline'>g=4, h=6, j=8</code>, and <code class='latex inline'>k=12</code>.</p><p><code class='latex inline'>\displaystyle \frac{2g(h-g)}{gh-j}</code></p>
<p> Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{5}{30} + \frac{4}{20}\times 10 </code></p>
<p>Most bacteria reproduce by dividing into identical cells. This process is called binary fission. A certain type of bacteria can double its numbers every 20 minutes. Suppose 100 of these cells are in one culture dish and 250 of the cells are in another culture dish. Write and evaluate an expression that shows the total number of bacteria cells in both dishes after 20 minutes.</p>
<p>Fill in the missing operation signs.</p><p><code class='latex inline'>\displaystyle 36 \bigcirc (4 \bigcirc 1) \bigcirc 2 = 24 </code></p>
<p>Use grouping symbols to make the equation true.</p><p><code class='latex inline'>\displaystyle 4^{2}-5 \cdot 2+1=1 </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (5- 3) \times 3\times (-2) </code></p>
<p>John&#39;s school is 10 km away from his home. On his way to school, there is a 7/11 convenience store exactly 4 km from John&#39;s home. John is heading home. Currently he is 2 km from School. 1 hour later, John is 3 km to 7/11. How many km did he walk? </p>
<p>Simplify the expression.</p><p><code class='latex inline'>\displaystyle \frac{2\left[8+\left(67-2^{6}\right)^{3}\right]}{9} </code></p>
<p>Evaluate each expression if x=12, y=8, and z=3.</p><p><code class='latex inline'>(\frac{x}{y})^2-\frac{3y-z}{(x-y)^2}</code></p>
<p>Calculate </p><p>a) <code class='latex inline'>\displaystyle -9 - (-6) \div 6 </code></p><p>b) <code class='latex inline'>\displaystyle 4 \times (-8) - (-5) </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle \frac{2 \times 8- 8 }{2 - 2\times 5} </code></p>
<p> Solve the following questions using proper order of operations. <code class='latex inline'> \displaystyle \frac{2}{3}+1- \frac{3}{5} </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{1}{3} + \frac{7}{9} \times\frac{1}{ 3} </code></p>
<p><code class='latex inline'>\displaystyle \begin{array}{l}\text { What is the value of }(2 a)^{2} b-2 c^{2} \text { for } a=2, b=4, \text { and } c=3 \text { ? } \ \text { (F) } 14 & \text { G } 28\end{array} </code></p><p> What is the value of <code class='latex inline'> \displaystyle (2 a)^{2} b-2 c^{2} </code> for <code class='latex inline'> \displaystyle a=2, b=4, \text { and } c=3 </code>?</p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle {1}\div \frac{5}{15} + \frac{2}{5} </code></p>
<p>Evaluate</p><p><code class='latex inline'>\displaystyle 15 + 3 + 12 - 6 </code></p>
<p>Evaluate each expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle 2 x-y^{2} ; x=7, y=3.5 </code></p>
<img src="/qimages/12427" /><p>Error Analysis A student simplifies an expression as shown below. Find the error and simplify the expression correctly.</p>
<p>Using brackets, group the terms in this expression to get the least possible result.</p><p><code class='latex inline'>\displaystyle 40 \times 6 - 3 \times 4 -5 </code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle (7+1) 9 </code></p>
<p>Mr. Martinez is a sales representative for an agricultural supply company. He receives a salary and monthly commission. He also receives a bonus each time he reaches a sales goal.</p><p>Write a verbal expression that describes how much Mr. Martinez earns in a year if he receives four equal bonuses.</p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 10 + 2 \times 3^2 -2 = 106 </code></p>
<p>Calculate </p><p><code class='latex inline'>\displaystyle -8 \times 6 \div (-2) - [-9 \times (-3)] </code></p>
<p>Write an expression for the amount of change you will get when you pay 0 for a purchase p with a $20 bill. Make a table to find the amounts of change you will get for purchases of $11.59, $17.50, $19.00, and $20.00.</p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 2 + 3\times2^2 </code></p>
<p>Use four 43 and any operations or brackets to make each whole number from 1 to 10.</p>
<p> Solve the following questions using proper order of operations. <code class='latex inline'> \displaystyle 1 -\frac{2}{6}+ \frac{5}{8} </code></p>
<p>Evaluate. Remember to use the correct order of operations.</p><p><code class='latex inline'>2^3+2^4</code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle \left(3-4^{2}\right)^{2}+8 </code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle (22.3 + 1.1)^2 -(22.3-1.1)^2 </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 3\times(4 -3) </code></p>
<p>Geometry The expression <code class='latex inline'>\displaystyle \pi r^{2} h </code> represents the volume of a cylinder with radius <code class='latex inline'>\displaystyle r </code> and height <code class='latex inline'>\displaystyle h . </code></p><p>a. What is the volume, to the nearest tenth of a cubic inch, of the juice can at the right? Use <code class='latex inline'>\displaystyle 3.14 </code> for <code class='latex inline'>\displaystyle \pi </code>.</p><p>b. Reasoning About how many cubic inches, to the nearest tenth of a cubic inch, does a fluid ounce of juice fill?</p><img src="/qimages/12455" />
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle 3.2 \times 10^4 </code></p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 20 \div 2 + 2 \times 2^2 + 6 = 120 </code></p>
<p>Evaluate each expression. Name the property used in each step.</p><p><code class='latex inline'>(2^5-5^2)+(4^2-2^4)</code></p>
<p>a. Geometry A cone has a slant height <code class='latex inline'>\displaystyle \ell </code> of <code class='latex inline'>\displaystyle 11 \mathrm{~cm} </code> and a radius <code class='latex inline'>\displaystyle r </code> of <code class='latex inline'>\displaystyle 3 \mathrm{~cm} </code>. Use the expression <code class='latex inline'>\displaystyle \pi r(\ell+r) </code> to find the surface area of the cone. Use <code class='latex inline'>\displaystyle 3.14 </code> for <code class='latex inline'>\displaystyle \pi </code>. Round to the nearest tenth of a square centimeter.</p><p>b. Reasoning Does the surface area of the cone double if the radius doubles? If the slant height doubles? Explain.</p>
<p> Use the distribution property to multiply the following numbers.</p><p><code class='latex inline'> \displaystyle -987 \times (-201 ) </code></p>
<p>Evaluate each expression.</p><p><code class='latex inline'>(16-3)\cdot 4</code></p>
<p>what is the simplified form of each expression?</p><p><code class='latex inline'>\displaystyle 2^{3} </code></p>
<p>Fill in the missing operation signs.</p><p><code class='latex inline'>\displaystyle -12 \bigcirc 4 \bigcirc (-3) = -24 </code></p>
<p>You can find the distance in feet that an object falls in <code class='latex inline'>\displaystyle t </code> seconds using the expression <code class='latex inline'>\displaystyle 16 t^{2} </code>. If you drop a ball from a tall building, how far does the ball fall in 3 s?</p><p><code class='latex inline'>\displaystyle \begin{array}{llll}\text { F) } 16 \mathrm{ft} & \text { G } 48 \mathrm{ft} & \text { H } 96 \mathrm{ft} & \text { D } 144 \mathrm{ft}\end{array} </code></p>
<p>Write an algebraic expression for each verbal expression.</p><p>six less than three times the square of y</p>
<p>Mr. Martinez is a sales representative for an agricultural supply company. He receives a salary and monthly commission. He also receives a bonus each time he reaches a sales goal.</p><p>Suppose Mr. Martinez’s annual salary is $42,000 and his average commission is $825 each month. If he receives four bonuses of $750 each, how much does he earn in a year?</p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 4 \times (2 + (-2) \times (-5)) </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 23-2\left(17+3^{3}\right) </code></p>
<p>Evaluate each expression for x = 3 and y = 4.</p><p><code class='latex inline'>\displaystyle (x y)^{3} </code></p>
<p>a) Evaluate with a calculator.</p><p><code class='latex inline'>\displaystyle -147 + 156 \div (-4) + 405 \div(-15) </code></p><p>b) Does your calculator follow the order of operations? Explain how you know.</p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle \frac {1}{3}\times\frac{3}{7}+(\frac{6}{7} - \frac{5}{14}) </code></p>
<p>Evaluate</p><p><code class='latex inline'>\displaystyle 7 \times 12 -48 </code></p>
<p>Evaluate. Remember to use the correct order of operations.</p><p><code class='latex inline'>-5(-3)^2</code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 7^{3}-\frac{2}{3}(13 \cdot 6+9) 4 </code></p>
<p>Evaluate each expression.</p><p><code class='latex inline'>\displaystyle 6-[\frac{2+7}{3}-(2\cdot3-5)]</code></p>
<p> Use the distribution property to multiply the following numbers.</p><p><code class='latex inline'> \displaystyle -213 \times 999 </code></p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 10 + 2 \times 3^2 -2 =84 </code></p>
<p>A student wrote the expressions shown and claimed they were equal for all values of <code class='latex inline'>\displaystyle x </code> and <code class='latex inline'>\displaystyle y . </code></p><p>a. Evaluate each expression for <code class='latex inline'>\displaystyle x=1 </code> and <code class='latex inline'>\displaystyle y=0 . </code></p><p>b. Evaluate each expression for <code class='latex inline'>\displaystyle x=1 </code> and <code class='latex inline'>\displaystyle y=2 . </code></p><p>c. Open-Ended Choose another pair of values for <code class='latex inline'>\displaystyle x </code> and <code class='latex inline'>\displaystyle y . </code> Evaluate each expression for those values.</p><p>d. Writing Is the student&#39;s claim correct? Justify your answer.</p>
<p>Evaluate each expression if x=12, y=8, and z=3.</p><p><code class='latex inline'>\frac{x-z^2}{y\div x}+\frac{2y-x}{y^2\div2}</code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 1 - (2 - 2\times(3^2 - 2^2)) </code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle 6+4 \div 2+3 </code></p>
<p>A computer store has certain software on sale at 3 for $20.00, with a limit of 3 at the sale price. Additional software is available at the regular price of $9.95 each.</p><p>How much would 5 software packages cost?</p>
<p>A student said: “The sum of the squares of two numbers is equal to the square of the sum of the numbers.”</p><p>Do you agree with this statement? Justify your answer.</p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle 66.15 \div 10.5^2 </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{5}{22}\times2 - \frac{4}{33} </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 2\times (4 - 10)\times 9 - 9\times(2 + 1) </code></p>
<p> Add the following numbers keeping in mind of the number properties we discussed in class.</p><p><code class='latex inline'> \displaystyle 234 + 75 + 5 - 235 </code></p>
<p>Simplify the expression.</p><p><code class='latex inline'>\displaystyle 3\left[(4-2)^{5}-20\right] </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 25+\left[(16-3 \cdot 5)+\frac{12+3}{5}\right] </code></p>
<p>Evaluate</p><p><code class='latex inline'>\displaystyle 144 \div (36 \times 2) </code></p>
<p>Calculate.</p><p><code class='latex inline'>\displaystyle (-3)^2 + (-8)\div (-2) </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle (1-\frac{2}{7})\times (- \frac{2}{5}) </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle \frac{1}{2} -\frac {1}{12}\times(\frac{1}{6} \div\frac{5}{3}) </code></p>
<p>Use the numbers <code class='latex inline'>2, 4, 6, 8</code>, and any operations or brackets to make an expression that equals each number. Show your work.</p><p><code class='latex inline'>24</code></p>
<p> Which of the following are integers.</p><p><code class='latex inline'> \displaystyle \begin{array}{ccccccccc} &a) &\frac{-10}{5} &b)&(\sqrt{2})^2 &c) &0 - 3 \\ &e) & \pi - 2\pi &f)&0.12 \times 10^3 &g) &\frac{ \sqrt{8} }{\sqrt{2}} \end{array} </code></p>
<p>What is the simplified form of `$\displaystyle 4+10 \div 4+6 ? </p><p>A. 1.4</p><p>B. 9.5</p><p>C. 12.5</p><p>D. 24</p>
<p>Evaluate each expression for s =4 and t =8.</p><p><code class='latex inline'>\displaystyle 3 s t^{2} \div(s t)+6 </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 2\div \frac{3}{5} + \frac{1}{12} </code></p>
<p>Calculate.</p><p><code class='latex inline'>\displaystyle \frac{(-2 + 10)}{2^2} </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (3 - 5)\times 7 - 7 </code></p>
<p>Calculate</p><p><code class='latex inline'>\displaystyle \frac{-6 + (-10)}{(-4)(2)} </code></p>
<p>Evaluate each expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle \frac{2 w+3 v}{v^{2}} ; v=6, w=1 </code></p>
<p>Evaluate the expression. Then write the expressions in order from greatest to least.</p><p><code class='latex inline'>\displaystyle (7.5 + 1)^2, (10.5-1)^2, 61.5+2^2, 103.5 -1^2 </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{5}{27}\times 3 + \frac{5}{36} </code></p>
<p> Add the following numbers keeping in mind of the number properties we discussed in class.</p><p><code class='latex inline'> \displaystyle 23 - 1 + 6 - 20 </code></p>
<p>You earn <code class='latex inline'>\displaystyle \$ 10 </code> for each hour you work at a canoe rental shop. Write an expression for your salary for working the number of hours <code class='latex inline'>\displaystyle h </code>. Make a table to find how much you earn for working <code class='latex inline'>\displaystyle 10 \mathrm{~h}, 20 \mathrm{~h}, 30 \mathrm{~h} </code>, and <code class='latex inline'>\displaystyle 40 \mathrm{~h} </code>.</p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{1}{24} \times2- \frac{1}{6} </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 3 + 3^3 \times 2 </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle a=8, b=4 </code>, and <code class='latex inline'>\displaystyle c=16 </code>. <code class='latex inline'>\displaystyle \frac{c^{2}}{b^{2}}+\frac{b^{2}}{a^{2}} </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 3\left[4-8+4^{2}(2+5)\right] </code></p>
<p> Add the following numbers keeping in mind of the number properties we discussed in class.</p><p><code class='latex inline'> \displaystyle 5423 - (23 + 5500) + 21 </code></p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 10 + 2 \times 3^2 -2 =254 </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 4 - 4^2 \times 4 + 4 </code></p>
<p>Evaluate. Remember to use the correct order of operations.</p><p><code class='latex inline'>30(2)^3</code></p>
<p>Evaluate each expression if x = -2, y = 4, and z = -6.</p><p> <code class='latex inline'>\displaystyle \frac{2x + 7y}{z} </code></p>
<p> Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{1}{2}\times (\frac{2}{5} - \frac{3}{40}) </code></p>
<p>A shirt is on sale for <code class='latex inline'>\displaystyle \$ 25 </code> at the local department store. The sales tax equals <code class='latex inline'>\displaystyle \frac{1}{25} </code> of the shirt&#39;s price. What is the total cost of the shirt including sales tax? </p>
<p>Forty metres of fencing are available to enclose a rectangular pen. When the length of the pen is l metres, the area of the pen, in square metres, is expressed as <code class='latex inline'>\displaystyle 20 l - l^2 </code> What is the area of the pen for each value of <code class='latex inline'>l</code>?</p><p>a) 4 m</p><p>b )10 m</p><p>c) 13 m</p>
<p>Derrick and Samantha are selling tickets for their school music. Floor seats cost $7.50 and balcony seats cost $5.00. Samantha sells 60 floor seats and 70 balcony seats, Derrick sells 50 floor seats and 90 balcony seats. </p><p>Evaluate the expression to determine how much they collected. </p>
<p>Find the area of the rectangle when n=4 centimetres. </p><img src="/qimages/23676" />
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 4- 2\times(5 -2) </code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle 5 \cdot 2^{2} \div 2+8 </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle 2 - \frac{3}{4} \div 2 </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle ( \frac{1}{2} - \frac{1}{3})\times(\frac{2}{3}+\frac {2}{3}) </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle 108 \div\left[3\left(9+3^{2}\right)\right] </code></p>
<p>Calculate.</p><p><code class='latex inline'>\displaystyle -3 \times [-4 + 2^3] </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 2^2 + 4- 3\times2^2 </code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle 20.8 \div 1.3 \times (14.8 + 17.2) </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'>\displaystyle 2 + 3\times2^2 </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle \left[\left(6^{3}-9\right) \div 23\right] 4 </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (6 - 3) \times 3 - 3 \times (-2) </code></p>
<p> Add the following numbers keeping in mind of the number properties we discussed in class.</p><p><code class='latex inline'> \displaystyle 239 - 12 - 240 + 11 </code></p>
<p>Evaluate each expression for s =4 and t =8.</p><p><code class='latex inline'>\displaystyle 2 s^{2}-t^{3} \div 16 </code></p>
<p>Use grouping symbols to make the equation true.</p><p><code class='latex inline'>\displaystyle 9+3-2+4=6 </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle \frac{5 - 3 \times(3 + 5)}{5}\times 5 </code></p>
<p>Evaluate each expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle (4 c-d+0.2)^{2}-10 c ; c=3.1, d=4.6 </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 3\times\frac{2}{9} + \frac{2}{6} </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{1}{4}\times\frac{2}{3} - \frac{1}{12} </code></p>
<p>Skylar wants to join the local gym. The cost in dollars for a membership can be expressed as: <code class='latex inline'>100 + 39.99m</code></p><p>where 100 is the initiation fee in dollars, 39.99 is the monthly fee in dollars, and m is the number of months for which a person signs up.</p><p>How much will it cost Skylar to join the gym for 14 months?</p>
<p>Evaluate the expression. Then write the expressions in order from greatest to least.</p><p><code class='latex inline'>\displaystyle 3^2, 2^3, (3-2)^2, (3 + 2)^2 </code></p>
<p>Simplify the expression.</p><p><code class='latex inline'>\displaystyle \frac{22+1^{3}+\left(3^{4}-7^{2}\right)}{2^{3}} </code></p>
<p>Derrick and Samantha are selling tickets for their school music. Floor seats cost $7.50 and balcony seats cost $5.00. Samantha sells 60 floor seats and 70 balcony seats, Derrick sells 50 floor seats and 90 balcony seats. </p><p>Write an expression to show how much money Samantha and Derrick have collected for tickets. </p>
<p>Calculate </p><p><code class='latex inline'>\displaystyle -16 \div [-2 -(-18)\times( -1)] </code></p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 10 + 2 \times 3^2 -2 = 24 </code></p>
<p>what is the simplified form of each expression?</p><p><code class='latex inline'>\displaystyle 5^{2} </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 6\times\frac{3}{6} + \frac{5}{24} </code></p>
<p>Evaluate each expression for x = 3 and y = 4.</p><p><code class='latex inline'>\displaystyle 4 x^{2}-3 x y </code></p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle \frac{(1+6) 9}{5^{2}-4} </code></p>
<p> Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{3}{5} \div (\frac{1}{15}- \frac{1}{10} ) </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (34 - 82)\div(82 - 34) </code></p>
<p>Calculate </p><p><code class='latex inline'>\displaystyle - 8 \times (-3) - (-8) \div (-4) </code></p>
<p>Write your birth date in this form: year/month/date.</p><p>Use the digits in this number in the order they are written to make an equation.</p><p>For example, if your birth date is April 15, 1992, write it as 92/04/15, then use the number 9, 2, 0, 4, 1, 5: </p><p><code class='latex inline'>\displaystyle 9 \times (2 \times 0) = ( 4+ 1) - 5 </code></p>
<p>Mr. Martinez is a sales representative for an agricultural supply company. He receives a salary and monthly commission. He also receives a bonus each time he reaches a sales goal.</p><p>Let e represent earnings, s represent his salary, c represent his commission, and b represent his bonus. Write an algebraic expression to represent his earnings if he receives four equal bonuses.</p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle 18.3 - (7.2 -3.5)^2 </code></p>
<p>Evaluate each expression for s =4 and t =8.</p><p><code class='latex inline'>\displaystyle s^{4}+t^{2}+s \div 2 </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 3\times\frac{5}{39} + \frac{4}{13} </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (5- 3) \times 3\times (-2) </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{1}{3}\times2 + \frac{1}{6} </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle 4\div11-\frac{1}{11} </code></p>
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle 1\div 21 -\frac{4}{7} </code></p>
<p>Evaluate. Remember to use the correct order of operations.</p><p><code class='latex inline'>2^4-2^2+2^3</code></p>
<p>Evaluate. Remember to use the correct order of operations.</p><p><code class='latex inline'>2^4+2^2-2^3</code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle (7 + (-7))\div 14 </code></p>
<p>Laurie and Chase are evaluating <code class='latex inline'>3[4+(27 \div3)]^2</code>. Who is correct? Explain your reasoning. </p><img src="/qimages/23674" />
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 20 \div 2 + 2 \times 2^2 + 6 = 8 </code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle 10.8 + 6.3^2 -1.2 \times 2.1 </code></p>
<p>When a 3-m springboard diver leaves the diving board, her height above the water depends on the time since she left the board. When the time is <code class='latex inline'>t</code> seconds, the diver’s height above the water, in metres, is expressed as <code class='latex inline'>3 + 8,8t -4.9t^2</code>.</p><p>Find the height of the diver after each time.</p><p>a) 0.5 s</p><p>b) 1 s</p><p>c) 1.5 s</p>
<p> Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle (\frac{3}{5} + \frac{5}{12} )\times \frac{2}{3} </code></p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 20 \div 2 + 2 \times 2^2 + 6 = 30 </code></p>
<p>Write an algebraic expression for each verbal expression.</p><p>four times the sum or r and s increased by twice the difference of r and s</p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 4 \times (3 + (-2) \times (-5)) </code></p>
<p> Solve the following questions using proper order of operations. <code class='latex inline'> \displaystyle 2 + \frac{1}{2}-\frac{1}{3} </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle a=8, b=4 </code>, and <code class='latex inline'>\displaystyle c=16 </code>. <code class='latex inline'>\displaystyle a^{2} b c-b^{2} </code></p>
<p>Insert brackets to make each statement true.</p><p><code class='latex inline'>\displaystyle 20 \div 2 + 2 \times 2^2 + 6 = 26 </code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 12\times \frac{1}{4} + \frac{1}{3} </code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle 2^3 + 22 - 21\times ( 32 - 10 \times 2) </code></p>
<p>Calculate </p><p><code class='latex inline'>\displaystyle [-2 - (-8)] \times (-5) </code></p>
<p>Evaluate each expression if x=12, y=8, and z=3.</p><p><code class='latex inline'>\frac{xy^2-3z}{3}</code></p>
<p>Evaluate. Remember to use the correct order of operations.</p><p><code class='latex inline'>4^5-4^3</code></p>
<p> Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{3}{2}\div(\frac{2}{7} - \frac{5}{14}) </code></p>
<p>Calculate</p><p><code class='latex inline'>\displaystyle \frac{[6 + (-38)] \div 4 (-2)}{(-2 + 4)(5 -6)} </code></p>
<p>Describe how to evaluate <code class='latex inline'>8[6^2-3(2+5)] \div8+3</code>.</p>
<p>Use each digit from 1 to 9 once, and any operations, to write an expression with answer 144.</p>
<p>Evaluate each expression for x = 3 and y = 4.</p><p><code class='latex inline'>\displaystyle x^{2}+2(x+y) </code></p>
<p>Cody bought 3 HD movies at $24.99 each and 2 non-HD movies at $14.99 each. Write an expression to show how much he spent before taxes.</p>
<p>Calculate.</p><p><code class='latex inline'>\displaystyle \frac{-5 + (-3)(-6)}{(-2)^2 + (-3)^2} </code></p>
<p>Danny got an incorrect answer of 12 because he remembered his order of operations backwards. The numbers were 8, 2, and 2. The operations were subtractions and multiplication. What is the correct answer.</p>
<p>Evaluate</p><p><code class='latex inline'>\displaystyle (5 + 6) \timeso 11 </code></p>
<p>Evaluate</p><p><code class='latex inline'>\displaystyle 89 - (76 + 13) </code></p>
<p> Use the distribution property to multiply the following numbers.</p><p><code class='latex inline'> \displaystyle 15 \times 12 </code></p>
<p> Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle \frac{1}{2} \times (\frac{1}{2}+\frac{1}{5} ) </code></p>
<p>Evaluate each expression for s =4 and t =8.</p><p><code class='latex inline'>\displaystyle (2 s)^{2} t </code></p>
<p>Evaluate each expression.</p><p><code class='latex inline'>(12-6)\cdot 2</code></p>
<p>Evaluate the following the order of operations.</p><p><code class='latex inline'> \displaystyle \frac{5^3}{ 11^2 + 2^2} \times 11^2 </code></p>
<p>Evaluate. Remember to use the correct order of operations.</p><p><code class='latex inline'>(5^2-3^2)+(5^2-3^2)</code></p>
<p>Evaluate each expression.</p><p><code class='latex inline'>5(8-3)+7\cdot2</code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 1\div \frac{7}{3} + \frac{5}{21} </code></p>
<p>Evaluate each expression.</p><p><code class='latex inline'>15+3\cdot2</code></p>
<p>Calculate </p><p><code class='latex inline'>\displaystyle -3 - (-4) \times [2 \times (-6)] </code></p>
<p>A computer store has certain software on sale at 3 for $20.00, with a limit of 3 at the sale price. Additional software is available at the regular price of $9.95 each.</p><p>Write an expression you could use to find the cost of 5 software packages. </p>
<p>Evaluate each expression. <code class='latex inline'>\displaystyle \frac{2 \cdot 8^{2}-2^{2} \cdot 8}{2 \cdot 8} </code></p>
<p> Solve the following questions using proper order of operations. <code class='latex inline'> \displaystyle 3 - \frac{4}{3}+\frac{1}{2} </code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.