20. Q7
8 Math AW / 4.7 / 20. Q7
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Video not available! See below for lectures and more practice questions!
Similar Question 1
<p>a) Find each quotient.</p><p>i) <code class='latex inline'>\frac{3}{4}\div \frac{5}{8}</code></p><p>ii) <code class='latex inline'>\frac{5}{8}\div \frac{3}{4}</code></p><p>iii) <code class='latex inline'>\frac{7}{12}\div \frac{2}{5}</code></p><p>iv) <code class='latex inline'>\frac{2}{5}\div \frac{7}{12}</code></p><p>v) <code class='latex inline'>\frac{5}{3}\div \frac{4}{5}</code></p><p>vi) <code class='latex inline'>\frac{4}{5}\div \frac{5}{3}</code></p><p>b) In part a, what patterns do you see in the division statements and their quotients?</p><p>Write two more pairs of division statements that follow the same pattern.</p>
Similar Question 2
<p>Sketch a model to show <code class='latex inline'>\frac{5}{6}\div\frac{1}{3}=2\frac{1}{2}</code>.</p>
Similar Question 3
<p>Use common denominators to find each quotient. </p><p><code class='latex inline'>\frac{5}{6}\div \frac{9}{8}</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Solve the following questions using proper order of operations. </p><p><code class='latex inline'> \displaystyle 2 - \frac{5}{7}\div\frac{1}{3} </code></p>
<p>Calculate without using a calculator.</p><p><code class='latex inline'>\displaystyle 1\frac{2}{3} \div 4\frac{5}{6} </code></p>
<p>Calculate. </p><p><code class='latex inline'>\frac{5}{6}\div\frac{1}{4}</code></p>
<p>Show that the two calculations are equivalent in each set below.</p><p><code class='latex inline'> \displaystyle \frac{4}{9} \div \frac{2}{3} \text{ and } \frac{4\div 2}{9 \div 3} </code></p>
<p>How do you know <code class='latex inline'>1\frac{2}{3}\div3\frac{1}{2}</code> has to be less than <code class='latex inline'>\frac{1}{2}</code>, without calculating the quotient?</p>
<p>Sketch a model to show <code class='latex inline'>\frac{5}{6}\div\frac{1}{3}=2\frac{1}{2}</code>.</p>
<p>Simplify. The first part has been done for you.</p><p><code class='latex inline'>\displaystyle 26 \div \frac{1}{2} </code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'> \displaystyle 4 \frac{3}{7} \div \frac{2}{11} = </code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'> \displaystyle 8 \frac{5}{3} \div 2\frac{5}{24}= </code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'> \displaystyle 2 \frac{1}{2} \div \frac{1}{3} = </code></p>
<p>Which quotients are <code class='latex inline'>1\frac{1}{4}</code>? How do you know?</p><p><code class='latex inline'>\frac{3}{5}\div\frac{3}{4}</code></p>
<p>Use a copy of each number line to illustrate each quotient. </p><p><code class='latex inline'>\frac{3}{4}\div \frac{1}{3}</code></p><img src="/qimages/23081" />
<p>Calculate. </p><p><code class='latex inline'>\frac{5}{6}\div\frac{1}{6}</code></p>
<p>Find each product or quotient.</p><p><code class='latex inline'>\displaystyle -\frac{3}{8} \div \frac{5}{8} </code></p>
<p>Calculate. </p><p><code class='latex inline'>\frac{1}{5}\div\frac{2}{5}</code></p>
<p>Show that the two calculations are equivalent in each set below.</p><p><code class='latex inline'> \displaystyle \frac{28}{15} \div \frac{4}{5} \text{ and } \frac{28\div 4}{15 \div 35} </code></p>
<p>For each of the following, how can you predict that the first calculation will be double the second calculation?</p><p><code class='latex inline'>\frac{6}{8}\div\frac{2}{3}</code> and <code class='latex inline'>\frac{3}{8}\div\frac{2}{3}</code></p>
<p>Which quotients are greater than 2? Calculate these quotients only.</p><p><code class='latex inline'>\frac{8}{9}\div\frac{3}{4}</code></p>
<p>Calculate each quotient without using a calculator.</p><p><code class='latex inline'> \displaystyle 6\frac{2}{3} \div 2\frac{1}{6} </code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'> \displaystyle 2 \frac{5}{6} \div \frac{1}{5} = </code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'>\displaystyle 2\frac{5}{6} \div 1\frac{1}{6} = </code></p>
<p>(a) In each case, determine the numbers represented by the rectangle and the triangle.</p><img src="/qimages/141" /><p>(b) Describe the connection between the number represented by the rectangle and the number represented by the triangle</p><p>(c) Create a similar question that demonstrates this connection.</p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'> \displaystyle 2 \frac{5}{6} \div 1\frac{1}{6} = </code></p>
<p>Divide.</p><p><code class='latex inline'>\frac{5}{3}\div \frac{3}{5}</code></p>
<p>Calculate. </p><p><code class='latex inline'>\frac{3}{8}\div\frac{2}{9}</code></p>
<p>Calculate each quotient.</p><p><code class='latex inline'> \displaystyle 9\frac{2}{3}\div 2\frac{2}{3} </code></p>
<p>Calculate each quotient.</p><p><code class='latex inline'> \displaystyle 8\frac{2}{3} \div 10 \frac{1}{2} </code></p>
<p>Calculate each quotient using equivalent fractions. </p><p><code class='latex inline'>5\div\frac{1}{3}</code></p>
<p>How can you calculate <code class='latex inline'>\frac{3}{5}\div\frac{1}{2}</code> using equivalent fractions with a common denominator?</p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle -\frac{15}{16}\times 3\frac{1}{5} \div (-1\frac{2}{3}) </code></p>
<p>Calculate. Show your work.</p><p><code class='latex inline'>\displaystyle 1\frac{3}{4} \div (-\frac{30}{49}) </code></p>
<p>Calculate. </p><p><code class='latex inline'>\frac{3}{4}\div6</code></p>
<p>Without calculating the quotient, how do you know that <code class='latex inline'>4\frac{2}{3} \div 10\frac{1}{4}</code> has to be less than <code class='latex inline'>\frac{1}{2}</code>?</p>
<p>Divide.</p><p><code class='latex inline'>2\frac{3}{4}\div 2\frac{1}{3}</code></p>
<p>Find the missing value.</p><p><code class='latex inline'> \displaystyle \square \times 1\frac{1}{4} = \frac{5}{8} </code></p>
<p>Use common denominators to find each quotient. </p><p><code class='latex inline'>\frac{3}{5}\div \frac{11}{10}</code></p>
<p>Evaluate.</p><p><code class='latex inline'> \begin{array}{cccccccc} &(a) & \frac{3}{5} \div \frac{1}{5} = &&(b) & \frac{1}{6} \div \frac{5}{6} = \\ &&& \\ &(c) & \frac{7}{3} \div \frac{2}{3} = &&(d) & \frac{4}{15} \div \frac{1}{3} = \\ &&& \\ &(e) & \frac{5}{14} \div \frac{3}{7} = &&(f) & \frac{33}{4} \div \frac{5}{2} = \\ &&& \end{array} </code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'>\displaystyle 5 \frac{2}{3} \div 2\frac{2}{3} = </code></p>
<p>Calculate </p><p><code class='latex inline'> \displaystyle 1\frac{2}{3} \div 5\frac{5}{6} </code></p>
<p>Use multiplication to find each quotient. </p><p><code class='latex inline'>\frac{7}{2}\div \frac{4}{3}</code></p>
<p>Calculate. </p><p><code class='latex inline'>\frac{4}{5}\div\frac{2}{3}</code></p>
<p>Calculate. </p><p><code class='latex inline'>2\frac{1}{2}\div\frac{2}{3}</code></p>
<p>Divide.</p><p><code class='latex inline'>1\frac{3}{8}\div 1\frac{3}{8}</code></p>
<p>Explain why <code class='latex inline'>\frac{15}{8}\div\frac{5}{4}</code> is half of <code class='latex inline'>\frac{15}{8}\div\frac{5}{8}</code>.</p>
<p>Which quotients are greater than 2? Calculate these quotients only.</p><p><code class='latex inline'>3\frac{1}{3}\div\frac{4}{5}</code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'> \displaystyle 4 \frac{3}{7} \div 2\frac{2}{21} = </code></p>
<p>Why does it make sense that <code class='latex inline'>\frac{7}{8}\div\frac{3}{4}</code> is greater than <code class='latex inline'>\frac{7}{8}</code>?</p>
<p>Which quotients are <code class='latex inline'>1\frac{1}{4}</code>? How do you know?</p><p><code class='latex inline'>\frac{3}{4}\div\frac{3}{5}</code></p>
<p>Evaluate without using a calculator. Clearly show how you simplified the negatives.</p><p><code class='latex inline'> \displaystyle \frac{2}{5}\div (-\frac{5}{8}) </code></p>
<p> Evaluate <code class='latex inline'>\displaystyle \frac{2}{3} \div \frac{1}{4}</code>.</p>
<p>Calculate each quotient using equivalent fractions. </p><p><code class='latex inline'>\frac{3}{5}\div\frac{5}{6}</code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'> \displaystyle 8 \frac{5}{3} \div \frac{3}{5}= </code></p>
<p><code class='latex inline'>\displaystyle \frac{16}{\square} \div \frac{2}{\square}=8 </code></p><p>Explain why this is true no matter what the denominator is, as long as both denominators are the same. </p>
<p> Use the fact that <code class='latex inline'>\displaystyle n \times \frac{1}{n}= \frac{n}{n} = 1</code>, reciprocal rule to simplify the following expressions.</p><p> <code class='latex inline'>\displaystyle \frac{3 \times 7 \times 6}{-9 \times 14} </code></p>
<p>Which quotients are <code class='latex inline'>1\frac{1}{4}</code>? How do you know?</p><p><code class='latex inline'>5\div4</code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'>\displaystyle 1 \frac{1}{2} \div \frac{1}{5} = </code></p>
<p>Find the missing value.</p><p><code class='latex inline'> \displaystyle 6\frac{3}{4} \times \square = 19\frac{1}{8} </code></p>
<p>Evaluate.</p><p><code class='latex inline'>\displaystyle \frac{3}{8} \div \frac{1}{4} </code></p>
<p>Find each product or quotient.</p><p><code class='latex inline'>\displaystyle -\frac{2}{3} \div 4 </code></p>
<p>Calculate each quotient.</p><p><code class='latex inline'> \displaystyle 2\frac{2}{5} \div \frac{4}{5} </code></p>
<p>Explain how you know that <code class='latex inline'>\frac{4}{6}\div\frac{3}{6}</code> has the same quotient as <code class='latex inline'>\frac{4}{5}\div\frac{3}{5}</code>.</p>
<p>Which whole numbers, N, find N to make the product of <code class='latex inline'>3\frac{1}{5}</code> and <code class='latex inline'>N\frac{3}{4}</code> great than 25?</p>
<p>Divide.</p><p><code class='latex inline'>3\frac{1}{2}\div 1\frac{4}{5}</code></p>
<p>Calculate. </p><p><code class='latex inline'>\frac{4}{7}\div\frac{1}{10}</code></p>
<p>Use multiplication to find each quotient. </p><p><code class='latex inline'>\frac{1}{2}\div \frac{7}{6}</code></p>
<p>Calculate each quotient without using a calculator.</p><p><code class='latex inline'> \displaystyle 5\frac{3}{4} \div \frac{1}{2} </code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'> \displaystyle 5 \frac{2}{3} \div 2\frac{2}{3} = </code></p>
<p>Calculate each quotient without using a calculator.</p><p><code class='latex inline'> \displaystyle \frac{1}{2} \div 5\frac{3}{4} </code></p>
<p>Which quotients are greater than 2? Calculate these quotients only.</p><p><code class='latex inline'>\frac{5}{9}\div\frac{1}{4}</code></p>
<p>Are these two equivalent?</p><p><code class='latex inline'>\displaystyle \begin{array}{llllll} & \frac{4}{9} \div \frac{2}{3} && \frac{4 \div 2}{9 \div 3} \\ \end{array} </code></p>
<p>Use common denominators to find each quotient. </p><p><code class='latex inline'>\frac{7}{12}\div \frac{1}{4}</code></p>
<p> Use the fact that <code class='latex inline'>\displaystyle n \times \frac{1}{n}= \frac{n}{n} = 1</code>, reciprocal rule to simplify the following expressions.</p><p> <code class='latex inline'>\displaystyle -\frac{3\times 4}{5} \times \frac{-125}{24 \times 4} \times \frac{-8}{3 \times 35} </code></p>
<p>Calculate <code class='latex inline'>\displaystyle 1\frac{7}{15} \div 1\frac{11}{25}</code> by multiplying by the reciprocal.</p>
<p>Evaluate.</p><p><code class='latex inline'> \begin{array}{cccccccc} &(a) & \frac{3}{5} \div 4 = &&(b) & \frac{1}{6} \div 2 = \\ &&& \\ &(c) & \frac{7}{3} \div 12 = &&(d) & \frac{4}{15} \div 12 = \\ &&& \\ &(e) & \frac{5}{14} \div 25 = &&(f) & \frac{33}{4} \div 66 = \\ \end{array} </code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'> \displaystyle 12 \frac{1}{5} \div \frac{3}{5} = </code></p>
<p>Calculate each quotient using equivalent fractions. </p><p><code class='latex inline'>2\frac{1}{2}\div\frac{3}{8}</code></p>
<p>Which quotients are <code class='latex inline'>1\frac{1}{4}</code>? How do you know?</p><p><code class='latex inline'>\frac{5}{2}\div\frac{1}{2}</code></p>
<p>Calculate each quotient.</p><p><code class='latex inline'> \displaystyle 1\frac{1}{4} \div 3\frac{4}{5} </code></p>
<p>Which quotients are greater than 2? Calculate these quotients only.</p><p><code class='latex inline'>\frac{7}{8}\div\frac{1}{3}</code></p>
<p>Divide.</p><p><code class='latex inline'>\frac{1}{6}\div \frac{5}{2}</code></p>
<p>Use common denominators to find each quotient. </p><p><code class='latex inline'>\frac{5}{2}\div \frac{1}{3}</code></p>
<p>Divide.</p><p><code class='latex inline'>1\frac{3}{4}\div 2\frac{9}{10}</code></p>
<p>For each of the following, how can you predict that the first calculation will be double the second calculation?</p><p><code class='latex inline'>\frac{3}{4}\div\frac{1}{8}</code> and <code class='latex inline'>\frac{3}{4}\div\frac{1}{4}</code></p>
<p>Describe a situation in which you might use each calculation. </p><p><code class='latex inline'>1\frac{2}{5}\div2\frac{2}{3}</code></p>
<p>Calculate. </p><p><code class='latex inline'>\frac{1}{2}\div\frac{1}{3}</code></p>
<p>Calculate each quotient using equivalent fractions. </p><p><code class='latex inline'>1\frac{3}{4}\div\frac{5}{6}</code></p>
<p>Calculate. </p><p><code class='latex inline'>\frac{7}{8}\div\frac{1}{3}</code></p>
<p>Determine the number represented by the rectangle and the triangle.</p><img src="/qimages/3529" />
<p>Calculate. </p><p><code class='latex inline'>\frac{5}{8}\div\frac{3}{4}</code></p>
<p>Calculate. </p><p><code class='latex inline'>\frac{3}{9}\div\frac{2}{9}</code></p>
<p>Calculate. </p><p><code class='latex inline'>\frac{3}{8}\div\frac{1}{2}</code></p>
<p>Which quotients are greater than 1?</p><p>i) <code class='latex inline'>\frac{3}{5}\div\frac{2}{3}</code></p><p>ii) <code class='latex inline'>\frac{9}{2}\div\frac{5}{6}</code></p><p>iii) <code class='latex inline'>\frac{3}{7}\div\frac{1}{8}</code></p><p>b) How could you have predicted the answer to part (a) without calculating the quotients?</p>
<p>Use common denominators to find each quotient. </p><p><code class='latex inline'>\frac{5}{6}\div \frac{9}{8}</code></p>
<p>Calculate each quotient without using a calculator.</p><p><code class='latex inline'> \displaystyle 10\frac{5}{8} \div 5\frac{1}{3} </code></p>
<p>Dividing a number by <code class='latex inline'>\displaystyle 5 \frac{1}{2}</code> give the same answers as multiplying the number by ?</p>
<p>Show that the two calculations are equivalent in each set below.</p><p><code class='latex inline'> \displaystyle \frac{35}{48} \div \frac{5}{12} \text{ and } \frac{35\div 5}{48 \div 12} </code></p>
<p>Calculate each quotient.</p><p><code class='latex inline'> \displaystyle 8\frac{3}{4} \div 5 \frac{2}{5} </code></p>
<p>For <strong>i)</strong>, determine the number represented by the rectangle and the triangle.</p><img src="/qimages/64" />
<p>Calculate. Show your work.</p><p> <code class='latex inline'> \displaystyle \frac{15}{16}\div(-1\frac{1}{24}) </code></p>
<p>Evaluate. </p><p><code class='latex inline'> \begin{array}{ccccccc} &(a) & 3 \div \frac{1}{5} = &(b) & 6 \div \frac{5}{6} = \\ &&& \\ &(c) & 5 \div \frac{2}{3} = &(d) & 12 \div \frac{1}{3} = \\ &&& \\ &(e) & 14 \div \frac{3}{7} = &(f) & 8 \div \frac{5}{2} = \\ \end{array} </code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'> \displaystyle 1 \frac{1}{2} \div \frac{1}{5} = </code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'>\displaystyle 8 \frac{5}{3} \div 2\frac{5}{24}= </code></p>
<p>Calculate. Show your work.</p><p> <code class='latex inline'> \displaystyle -4\frac{2}{3}\div\frac{7}{12} </code></p>
<p>Calculate. </p><p><code class='latex inline'>\frac{1}{4}\div\frac{5}{6}</code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'>\displaystyle 4 \frac{3}{7} \div 2\frac{2}{21} = </code></p>
<p>Calculate. </p><p><code class='latex inline'>\frac{5}{8}\div\frac{1}{4}</code></p>
<p>Calculate. Show your work.</p><p> <code class='latex inline'> \displaystyle -2\frac{5}{6} \div (-1\frac{1}{12}) </code></p>
<p>Find each quotient.</p><p>Find the quotient of <code class='latex inline'>-156</code> and <code class='latex inline'>-\frac{3}{8}</code>.</p>
<p>Use multiplication to find each quotient. </p><p><code class='latex inline'>\frac{8}{5}\div \frac{3}{4}</code></p>
<p>Use a copy of each number line to illustrate each quotient. </p><p><code class='latex inline'>\frac{5}{6}\div \frac{1}{3}</code></p><img src="/qimages/23080" />
<p>Use multiplication to find each quotient. </p><p><code class='latex inline'>\frac{9}{10}\div \frac{5}{3}</code></p>
<p>Find each quotient.</p><p>Find the quotient of <code class='latex inline'>-74</code> and <code class='latex inline'>-\frac{5}{3}</code>.</p>
<p>Calculate each quotient.</p><p><code class='latex inline'> \displaystyle 2\frac{7}{8}\div 3\frac{5}{6} </code></p>
<p>Calculate. </p><p><code class='latex inline'>\frac{9}{20}\div\frac{3}{5}</code></p>
<p>Calculate. </p><p><code class='latex inline'>\frac{4}{8}\div\frac{7}{8}</code></p>
<p>Evaluate.</p><p><code class='latex inline'> \displaystyle 1\div \frac{7}{3} + \frac{5}{21} </code></p>
<p>Divide.</p><p><code class='latex inline'>1\frac{9}{10}\div 2\frac{2}{3}</code></p>
<p>Divide.</p><p><code class='latex inline'>\frac{4}{9}\div \frac{4}{9}</code></p>
<p>Calculate. </p><p><code class='latex inline'>1\frac{1}{5}\div\frac{2}{5}</code></p>
<p>Calculate each product or quotient without using any calculator.</p><p><strong>a)</strong> <code class='latex inline'>2\frac{1}{5} \times 2\frac{5}{6}</code></p><p><strong>b)</strong> <code class='latex inline'>5\frac{7}{8} \times 6\frac{3}{4}</code></p><p><strong>c)</strong> <code class='latex inline'>5\frac{1}{2} \div \frac{9}{10}</code></p><p><strong>d)</strong> <code class='latex inline'>8\frac{5}{6} \div 1\frac{5}{8} </code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'>\displaystyle 12 \frac{1}{5} \div 2\frac{3}{5} = </code></p>
<p>Convert the following fractions into Improper form then divide.</p><p><code class='latex inline'> \displaystyle 12 \frac{1}{5} \div 2\frac{3}{5} = </code></p>
<p>a) Find each quotient.</p><p>i) <code class='latex inline'>\frac{3}{4}\div \frac{5}{8}</code></p><p>ii) <code class='latex inline'>\frac{5}{8}\div \frac{3}{4}</code></p><p>iii) <code class='latex inline'>\frac{7}{12}\div \frac{2}{5}</code></p><p>iv) <code class='latex inline'>\frac{2}{5}\div \frac{7}{12}</code></p><p>v) <code class='latex inline'>\frac{5}{3}\div \frac{4}{5}</code></p><p>vi) <code class='latex inline'>\frac{4}{5}\div \frac{5}{3}</code></p><p>b) In part a, what patterns do you see in the division statements and their quotients?</p><p>Write two more pairs of division statements that follow the same pattern.</p>
<p>Does order matter in division of fractions? For example, is <code class='latex inline'>\frac{2}{3}\div\frac{1}{5}</code> the same as <code class='latex inline'>\frac{1}{5}\div\frac{2}{3}</code>? Explain.</p>
<p>Convert the following fractions into Improper form then divide.</p><p>$\displaystyle 5 \frac{2}{3} \div \frac{2}{5} =</p><p>$</p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.