3. Q3a
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Solve using opposite operations.</p><p><code class='latex inline'>2+h=9</code></p>
Similar Question 2
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle y + 3 = 10 </code></p>
Similar Question 3
<p>Solve for x.</p><p><code class='latex inline'> \displaystyle \begin{array}{llll} &a) & x - 4 = 3 &b) & x - 2 = -3 \\ &c) & - 7 + x = -11 \end{array} </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Solve.</p><p><code class='latex inline'>\displaystyle n + 3 =5.5 </code></p>
<p>Describe and correct the error in solving the equation.</p><p><code class='latex inline'>\displaystyle \begin{aligned}-0.8+r &=12.6\\ r &=12.6+(-0.8)\\ r &=11.8 \end{aligned} </code></p>
<p>Solve using opposite operations.</p><p><code class='latex inline'>x+5=8</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle y + 3 = 10 </code></p>
<p>Solve using opposite operations.</p><p><code class='latex inline'>g-5=-3</code></p>
<p>Solve using the balance method.</p><p><code class='latex inline'>x+2=6</code></p>
<p>Solve by inspection.</p><p><code class='latex inline'>x+4=7</code></p>
<p>Write a clear algebraic solution for each balance problem. Check that your solution makes the equation true.</p><p><code class='latex inline'>x - 2 = 9</code></p>
<p>Solve using opposite operations.</p><p><code class='latex inline'>2+h=9</code></p>
<p>Solve using opposite operations.</p><p><code class='latex inline'>k-4=-1</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle y - 4 =2 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle x + 5 = 12 </code></p>
<p>Collect the like terms and simplify.</p><p><code class='latex inline'> \displaystyle \begin{array}{llll} x + 5 = 3 \end{array} </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle x - 6 = 7 </code></p>
<p>Write a clear algebraic solution for each balance problem. Check that your solution makes the equation true.</p><p><code class='latex inline'>x+ 4 = 9</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle y - 3= 0 </code></p>
<p>Solve.</p><p><code class='latex inline'>\displaystyle n + 7 =13 </code></p>
<p>Solve using opposite operations.</p><p><code class='latex inline'>-3+c=-5</code></p>
<p>Solve.</p><p><code class='latex inline'>\displaystyle x+6=-4 </code></p>
<p>Solve each equation. Then check your solution.</p><p><code class='latex inline'>-18=-61+d</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle x + 5 = 12 </code></p>
<p>Solve for x.</p><p><code class='latex inline'>\displaystyle 8 = x + 4 </code></p>
<p>Solve using opposite operations.</p><p><code class='latex inline'>d+5=-2</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle x- 5 =4 </code></p>
<p>Solve by inspection.</p><p><code class='latex inline'>y-3=5</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle m + 8 = 11 </code></p>
<p>Solve each equation. Then check your solution.</p><p><code class='latex inline'>r-(-19)=-77</code></p>
<p> Find the value of x.</p><p><code class='latex inline'> \displaystyle x + 2 = -11 </code></p>
<p>Solve using the balance method.</p><p><code class='latex inline'>y-2=4</code></p>
<p> Find the value of x.</p><p><code class='latex inline'> \displaystyle x + 7 = -3 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle y + 3 = 10 </code></p>
<p>Solve each equation. Check your solution.</p><p><code class='latex inline'>\displaystyle z-19=34 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle h + 2 = 6 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle y - 4 =2 </code></p>
<p>Solve for x.</p><p><code class='latex inline'> \displaystyle \begin{array}{llll} &a) & x - 4 = 3 &b) & x - 2 = -3 \\ &c) & - 7 + x = -11 \end{array} </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.