4. Q4i
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Write a repeated addition question for each multiplication, and then solve.</p><p><code class='latex inline'>(3)(-6)</code></p>
Similar Question 2
<p>Graph each set of numbers on a number line.</p><p>{integers between -6 and 10}</p>
Similar Question 3
<p>Write a multiplication question for each repeated addition, and then solve.</p><p><code class='latex inline'>0 + 0 + 0 + 0 + 0 + 0 + 0</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Multiply.</p><p><code class='latex inline'>-5 \times 3 \times (-2)</code></p>
<p>Write each as a multiplication expression, and then solve.</p><p>a) <img src="/qimages/23154" /></p><p>b) <img src="/qimages/23155" /></p>
<p>How can you predict the sign of the product of two integers?</p>
<p>Multiply.</p><p><code class='latex inline'>-8 \times (-9)</code></p>
<p>Create a subtraction problem for each pair of integers.</p><p>-1 and -14</p>
<p>Find each product or quotient.</p><p><code class='latex inline'>\displaystyle -3 \cdot 7 </code></p>
<p>Find each product.</p><p><code class='latex inline'>(-7)(-6)</code></p>
<p>Write the multiplication sentence that each model represents.</p><p>c) <img src="/qimages/23145" /></p><p>d) <img src="/qimages/23146" /></p>
<p>Calculate each product. Order the products from greatest to least.</p><p>a) <code class='latex inline'>(0)(-20)</code></p><p>b) <code class='latex inline'>(-6)(-30)</code></p><p>c) <code class='latex inline'>(7)(-80)</code></p><p>d) <code class='latex inline'>(-20)(50)</code></p>
<p>Calculate. Order the differences from greatest to least.</p><p>a) 7 -(-9)</p><p>b) 8-8</p><p>c) -22 -(-10)</p><p>d) 0 -11</p>
<p>Use a real-world meaning for -3 to explain why <code class='latex inline'>4 \times (-3)=-12</code> makes sense.</p>
<p>Find each sum.</p><p><code class='latex inline'>\displaystyle 6+(-6) </code></p>
<p>Write a repeated addition question for each multiplication, and then solve.</p><p><code class='latex inline'>(4)(8)</code></p>
<p>Perform each integer operation.</p><p><code class='latex inline'>\displaystyle 2-16 </code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle 3.6+(-1.7) </code></p>
<p>How does knowing <code class='latex inline'>0 - 18 = -18</code> show that <code class='latex inline'>(-6) \times 3 = -18</code> in step E?</p>
<p>Write each subtraction as an addition. Then calculate without using a calculator.</p><p>a) -10 - (-8)</p><p>b) 3 - (-7)</p><p>c) -6 -0</p><p>d) 0 - 10</p><p>e) -8 - 6</p><p>f) - 15 - (-5)</p>
<p>Perform each integer operation.</p><p><code class='latex inline'>\displaystyle 100 \times(-4) </code></p>
<p>Evaluate using a calculator.</p><p>-7145 - 3658 + (-2159)</p>
<p>a) Model <code class='latex inline'>-4 \times (-3)</code> on a number line. Calculate the product. Explain what you did.</p><p>b) Model <code class='latex inline'>-4 \times (-3)</code> with counters. Calculate the product. Explain what you did.</p>
<p>How would you calculate <code class='latex inline'>(-4)(-7)</code>? Justify your strategy.</p>
<p>Find each sum.</p><p><code class='latex inline'>\displaystyle -8+6 </code></p>
<p>Graph each set of numbers on a number line.</p><p>{integers less than -4}</p>
<p>Graph each number on a number line.</p><p><code class='latex inline'>\displaystyle -2 </code></p>
<p>Dario is on a cycling trip. He started at 0 km. He is now at position <code class='latex inline'>20 h \times (-20 km/h)</code>. When did he reach each of the following positions? Explain your reasoning.</p><p>a) <code class='latex inline'>10 h \times (-20km/h)</code></p><p>b) <code class='latex inline'>8 h \times (-20km/h)</code></p><p>c) <code class='latex inline'>0 km</code></p>
<p>What is the greatest possible product of any two numbers in this list? Explain your answer.</p><p>-3, -7, -15, 6</p>
<p>The product of five different integers is -80.</p><p>a) What is the least possible sum of these five integers?</p><p>b) Is it possible for the product of four different integers to be -80? Explain.</p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle (-3)(-9) </code></p>
<p>Name the coordinates of the points graphed on each number line.</p><img src="/qimages/24101" />
<p>Multiply.</p><p><code class='latex inline'>4 \times (-3) \times (-2)</code></p>
<p>Multiply each of the following,</p><p><code class='latex inline'>\displaystyle 17 \times 23 </code></p>
<p>Calculate. How could you estimate to see if each answer is reasonable?</p><p>-17 - 23</p>
<p>Estimate each product.</p><p><code class='latex inline'>-35 \times (-25)</code> </p>
<p>The product of two integers is between -20 and -25. What are the integers? Give five answers.</p>
<p>Multiply.</p><p><code class='latex inline'>(-9) \times (-9)</code></p>
<p>Estimate each product.</p><p><code class='latex inline'>-21 \times 9 \times (-16)</code> </p>
<p>Find each difference.</p><p><code class='latex inline'>\displaystyle -16-(-25) </code></p>
<p>Graph each set of numbers on a number line.</p><p>{<code class='latex inline'>-4,-3,-1,3</code>}</p>
<p>Graph each set of numbers on a number line.</p><p>{integers less than 0 and greater than -6}</p>
<p>Perform each integer operation.</p><p><code class='latex inline'>\displaystyle -8+(-15) </code></p>
<p>Write a repeated addition question for each multiplication, and then solve.</p><p><code class='latex inline'>2 \times (-9)</code></p>
<p>Perform each integer operation.</p><p><code class='latex inline'>\displaystyle 42 \div(-6) </code></p>
<p>Reasoning Suppose you need to subtract <code class='latex inline'>\displaystyle a </code> from <code class='latex inline'>\displaystyle b </code> but mistakenly subtract <code class='latex inline'>\displaystyle b </code> from <code class='latex inline'>\displaystyle a </code> instead. How is the answer you get related to the correct answer? Explain.</p>
<p>Evaluate using a calculator.</p><p>-128 - (-306) </p>
<p>Perform each integer operation.</p><p><code class='latex inline'>\displaystyle -7 \times 7 </code></p>
<p>Perform each integer operation.</p><p><code class='latex inline'>\displaystyle 8-(-7) </code></p>
<p>Write a multiplication question for each repeated addition, and then solve.</p><p><code class='latex inline'>0 + 0 + 0 + 0 + 0 + 0 + 0</code></p>
<p>Multiply.</p><p><code class='latex inline'>-2 \times 4</code></p>
<p>Evaluate using a calculator.</p><p>-119 + (-237) - (-155)</p>
<p>Perform each integer operation.</p><p><code class='latex inline'>\displaystyle 7-11 </code></p>
<p>Continue each pattern for the next three terms. Explain the pattern rule.</p><p>-2, 4, -8, 16, <code class='latex inline'>\square</code>, <code class='latex inline'>\square</code>, <code class='latex inline'>\square</code>,...</p>
<p>Calculate.</p><p>-40 + (-50) + 90 - (-60)</p>
<p>Find each difference.</p><p><code class='latex inline'>\displaystyle 61-(-11) </code></p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle 0(-8) </code></p>
<p>Estimate each product.</p><p><code class='latex inline'>(-18)(38)</code> </p>
<p>Continue each pattern for the next three terms. Explain the pattern rule.</p><p>-15, 30, 90, -360, <code class='latex inline'>\square</code>, <code class='latex inline'>\square</code>, <code class='latex inline'>\square</code>,...</p>
<p>Find each difference.</p><p><code class='latex inline'>\displaystyle -28-14 </code></p>
<p>Why does it make sense that <code class='latex inline'>4 \times (-3)</code> and <code class='latex inline'>-3 \times 4</code> have the same product?</p>
<p>Write a repeated addition question for each multiplication, and then solve.</p><p><code class='latex inline'>(3)(-6)</code></p>
<p>Why is it easier to model <code class='latex inline'>4 \times (-3)</code> than <code class='latex inline'>-4 \times (-3)</code> using counters?</p>
<p>Write the multiplication sentence that each model represents.</p><p>a) <img src="/qimages/23143" /></p><p>b) <img src="/qimages/23144" /></p>
<p>Graph each number on a number line.</p><p><code class='latex inline'>\displaystyle 2 \frac{1}{2} </code></p>
<p>Draw a number line to represent 5 — (—2).</p>
<p>Perform each integer operation.</p><p><code class='latex inline'>\displaystyle -3 \times(-14) </code></p>
<p>Perform each integer operation.</p><p><code class='latex inline'>\displaystyle -5-(-9) </code></p>
<p>Identify the property illustrated by the equation.</p><p><code class='latex inline'>\displaystyle 5+(-5)=0 </code></p>
<p>Multiply.</p><p><code class='latex inline'>-2 \times (-3) \times (-4) \times (-5)</code></p>
<p>Calculate.</p><p>12 - (-5) + (-4)</p>
<p>Calculate. How could you estimate to see if each answer is reasonable?</p><p>36 - (-17)</p>
<p>Multiply each of the following,</p><p><code class='latex inline'>\displaystyle 14 \times 6 </code></p>
<p>Perform each integer operation.</p><p><code class='latex inline'>\displaystyle 13+(-5) </code></p>
<p>Match the equivalent addition and subtraction expressions.</p><p>a) -6-9</p><p>b) -10-(-12)</p><p>c) 6-9</p><p>d) 10-12</p><p>e) -12-10</p><p>A. 10 + (-12)</p><p>B. -6 + (-9)</p><p>C. -12 + (-10)</p><p>D. 6 + (-9)</p><p>E. -10 + 12</p>
<p>Determine the missing integer for <code class='latex inline'>-9 \times (\square) = 63</code>. Explain what you did.</p>
<p>Graph each set of numbers on a number line.</p><p>{integers between -6 and 10}</p>
<p>Write a multiplication question for each repeated addition, and then solve.</p><p><code class='latex inline'>-5 + (-5) + (-5)</code></p>
<p>Write a multiplication question for each repeated addition, and then solve.</p><p><code class='latex inline'>-8 + (-8) + (-8) + (-8) +(-8)</code></p>
<p>Write the addition statement that is equivalent to <code class='latex inline'>5 - (-2)</code>.</p>
<p>Simplify each expression.</p><p><code class='latex inline'>\displaystyle 1.2-5 </code></p>
<p>How does using counters and the zero principle show that subtracting <code class='latex inline'>58 -(-89)</code> has the same result as adding 58 and the opposite of -89?</p>
<p>Perform each integer operation.</p><p><code class='latex inline'>\displaystyle -7+2 </code></p>
<p>Create a subtraction problem for each pair of integers.</p><p>-12 and 9</p>
<p>Calculate.</p><p>-16 + 14 - 5</p>
<p>Calculate. How could you estimate to see if each answer is reasonable?</p><p>19 - (-24)</p>
<p>Graph each number on a number line.</p><p>0</p>
<p>Calculate. How could you estimate to see if each answer is reasonable?</p><p>-32 - (-54)</p>
<p>Multiply any three integers that are not in the same row or column. Repeat with other sets of three integers. What do you notice?</p><p><code class='latex inline'>\displaystyle \begin{array}{|r|r|r|} \hline -32 & 40 & -24 \\ \hline 28 & -35 & 21 \\ \hline -8 & 10 & -6 \\ \hline \end{array} </code></p>
<p>Use counters and the zero principle to represent <code class='latex inline'>5 -(-2)</code>. Draw your model.</p>
<p>Calculate.</p><p>22 - 30 + 0 - (-7)</p>
How did you do?
Found an error or missing video? We'll update it within the hour! 👉
Save videos to My Cheatsheet for later, for easy studying.