9. Q9a
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Evaluate each expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle (4 c-d+0.2)^{2}-10 c ; c=3.1, d=4.6 </code></p>
Similar Question 2
<p>Evaluate for <code class='latex inline'>a=-3, b=-1</code>, and <code class='latex inline'>c=2</code>. </p><p><code class='latex inline'>\displaystyle (2 a b c)^{2} </code></p>
Similar Question 3
<p>Evaluate each expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle (4 c-d+0.2)^{2}-10 c ; c=3.1, d=4.6 </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Evaluate each expression if <code class='latex inline'>g=4, h=6, j=8</code>, and <code class='latex inline'>k=12</code>.</p><p><code class='latex inline'>\displaystyle \frac{2g(h-g)}{gh-j}</code></p>
<p> If <code class='latex inline'>a = \frac{3}{2}, b = -\frac{7}{4}</code> and <code class='latex inline'>c = \frac{2}{9}</code>, what do the following expressions yield?</p><p><code class='latex inline'>\frac{5}{2}a - \frac{4}{3}b - 2c</code></p>
<p>a. Evaluate the expression <code class='latex inline'>\displaystyle 2\left(2 x^{2}-x\right)-3\left(x^{2}-x\right)+x^{2}-x </code> for <code class='latex inline'>\displaystyle x=3 </code>. Do <code class='latex inline'>\displaystyle n </code> simplify the expression before evaluating it.</p><p>b. Simplify the expression in part (a) and then evaluate your answer for <code class='latex inline'>\displaystyle x=3 </code>.</p><p>c. Writing Explain why the values in parts (a) and (b) should be the same.</p>
<p>If <code class='latex inline'>\displaystyle m=2 n^{2}-4 n+3 </code>, find the value of <code class='latex inline'>\displaystyle m </code> for each of the following values of <code class='latex inline'>\displaystyle n </code></p><p><code class='latex inline'>-10</code></p>
<p>Evaluate each expression if x=12, y=8, and z=3.</p><p><code class='latex inline'>(\frac{x}{y})^2-\frac{3y-z}{(x-y)^2}</code></p>
<p>If <code class='latex inline'>\displaystyle y=x^{2}+5 </code>, find the value of <code class='latex inline'>\displaystyle y </code> for each of the following values of <code class='latex inline'>\displaystyle x </code>.</p><p><code class='latex inline'>-2</code></p>
<p>The formula to convert temperatures between degrees Celsius and degrees Fahrenheit is <code class='latex inline'>F= \frac{9}{5}C + 32</code>. Use this formula to convert the following.</p><p>Normal body temperature, <code class='latex inline'>37^{o}</code>, to degrees Fahrenheit.</p>
<p>Evaluate each expression for x = 3 and y = 4.</p><p><code class='latex inline'>\displaystyle (x y)^{3} </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle a=3, b=\frac{2}{3} </code>, and <code class='latex inline'>\displaystyle c=-1.7 </code></p><p><code class='latex inline'>\displaystyle -8(a-4) </code></p>
<p>A student wrote the expressions shown and claimed they were equal for all values of <code class='latex inline'>\displaystyle x </code> and <code class='latex inline'>\displaystyle y . </code></p><p>a. Evaluate each expression for <code class='latex inline'>\displaystyle x=1 </code> and <code class='latex inline'>\displaystyle y=0 . </code></p><p>b. Evaluate each expression for <code class='latex inline'>\displaystyle x=1 </code> and <code class='latex inline'>\displaystyle y=2 . </code></p><p>c. Open-Ended Choose another pair of values for <code class='latex inline'>\displaystyle x </code> and <code class='latex inline'>\displaystyle y . </code> Evaluate each expression for those values.</p><p>d. Writing Is the student&#39;s claim correct? Justify your answer.</p>
<p>Evaluate for <code class='latex inline'>a=-3, b=-1</code>, and <code class='latex inline'>c=2</code>. </p><p><code class='latex inline'>\displaystyle (2 a b c)^{2} </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle a=-4, b=-0.8, c=5 </code>, and <code class='latex inline'>\displaystyle d=\frac{1}{5} </code></p><p><code class='latex inline'>\displaystyle \frac{a-b}{b d} </code></p>
<p>The formula to convert temperatures between degrees Fahrenheit and degrees Celsius is <code class='latex inline'>C = \frac{5}{9}(F-32)</code>. Apply the formula to convert the following.</p><p>Miami, Florida&#39;s record high of <code class='latex inline'>98^{o}F</code> to degrees Celsius.</p>
<p>If <code class='latex inline'>\displaystyle y=x^{2}+5 </code>, find the value of <code class='latex inline'>\displaystyle y </code> for each of the following values of <code class='latex inline'>\displaystyle x </code>.</p><p><code class='latex inline'>-0.1</code></p>
<p>Evaluate each expression for s =4 and t =8.</p><p><code class='latex inline'>\displaystyle 3 s t^{2} \div(s t)+6 </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle a=-2, b=3 </code>, and <code class='latex inline'>\displaystyle c=4.2 </code></p><p><code class='latex inline'>\displaystyle \frac{3 a-2 c}{4 a b} </code></p>
<p>Evaluate each expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle \frac{2 w+3 v}{v^{2}} ; v=6, w=1 </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle w=\frac{3}{4}, x=8, y=-2 </code>, and <code class='latex inline'>\displaystyle z=0.4 </code></p><p><code class='latex inline'>\displaystyle \frac{12 w-6 y}{z^{2}} </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle a=8, b=4 </code>, and <code class='latex inline'>\displaystyle c=16 </code>. <code class='latex inline'>\displaystyle \frac{c^{2}}{b^{2}}+\frac{b^{2}}{a^{2}} </code></p>
<p>If <code class='latex inline'>\displaystyle m=2 n^{2}-4 n+3 </code>, find the value of <code class='latex inline'>\displaystyle m </code> for each of the following values of <code class='latex inline'>\displaystyle n </code></p><p><code class='latex inline'>10</code></p>
<p>Evaluate the expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle \frac{16(x -4)(y-2)}{4(x-3)y} </code>, <code class='latex inline'>\displaystyle x = 1 </code> and <code class='latex inline'>\displaystyle y = -2 </code></p>
<p>If <code class='latex inline'>\displaystyle m=2 n^{2}-4 n+3 </code>, find the value of <code class='latex inline'>\displaystyle m </code> for each of the following values of <code class='latex inline'>\displaystyle n </code></p><p><code class='latex inline'>0</code></p>
<p>Substitute the given values and evaluate each expression.</p><p><code class='latex inline'>a^2 + 2b -7</code>, <code class='latex inline'>a =4, b = 1</code></p>
<p>If <code class='latex inline'>\displaystyle y=x^{2}+5 </code>, find the value of <code class='latex inline'>\displaystyle y </code> for each of the following values of <code class='latex inline'>\displaystyle x </code>.</p><p><code class='latex inline'>0</code></p>
<p>Evaluate each expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle (4 c-d+0.2)^{2}-10 c ; c=3.1, d=4.6 </code></p>
<p> If <code class='latex inline'>a = -4, b = 7</code>, and <code class='latex inline'>c = -3</code>, what do the following expressions yield?</p><p><code class='latex inline'>5(a + b) - 8(b - c) + 6(c + a)</code></p>
<p>If <code class='latex inline'>\displaystyle m=2 n^{2}-4 n+3 </code>, find the value of <code class='latex inline'>\displaystyle m </code> for each of the following values of <code class='latex inline'>\displaystyle n </code></p><p><code class='latex inline'>1.5</code></p>
<p> Simplify each expression then determine its value when <code class='latex inline'>x = 4, x = -3</code>, and <code class='latex inline'>x = -1</code>.</p><p><code class='latex inline'> \displaystyle 2x + 11 - 4(2x + 7) </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle w=-3, x=4, y=2.6 </code>, and <code class='latex inline'>\displaystyle z=\frac{1}{3} </code>.</p><p><code class='latex inline'>\displaystyle 9 z-4 y+2 w </code></p>
<p>The formula to convert temperatures between degrees Fahrenheit and degrees Celsius is <code class='latex inline'>C = \frac{5}{9}(F-32)</code>. Apply the formula to convert the following.</p><p>Anchorage, Alaska&#39;s record low of -<code class='latex inline'>38^{o}F</code> to degrees Celsius.</p>
<p>Evaluate each expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle -5(x+2 y)+15(x+2 y) ; x=7 </code> and <code class='latex inline'>\displaystyle y=-7 </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle a=-2, b=3 </code>, and <code class='latex inline'>\displaystyle c=4.2 </code></p><p><code class='latex inline'>\displaystyle a+3\left[b^{2}-(a+c)\right] </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle a=3, b=\frac{2}{3} </code>, and <code class='latex inline'>\displaystyle c=-1.7 </code></p><p><code class='latex inline'>\displaystyle \frac{a \cdot b}{c} </code></p>
<p> Simplify each expression then determine its value when <code class='latex inline'>x = 4, x = -3</code>, and <code class='latex inline'>x = -1</code>.</p><p><code class='latex inline'> \displaystyle 3x - 2+ 4(x - 3) </code></p>
<p>Evaluate each expression if x=12, y=8, and z=3.</p><p><code class='latex inline'>\frac{xy^2-3z}{3}</code></p>
<p>For formula <code class='latex inline'>C =\frac{5}{9}(F- 32)</code> is used to convert Fahrenheit temperatures to Celsius. </p><p>Determine the Fahrenheit temperature when <code class='latex inline'>C = 25</code>.</p>
<p>Evaluate each expression for x = 3 and y = 4.</p><p><code class='latex inline'>\displaystyle x^{2}+2(x+y) </code></p>
<p> If <code class='latex inline'>a = -4, b = 7</code>, and <code class='latex inline'>c = -3</code>, what do the following expressions yield?</p><p><code class='latex inline'>-4a - 6b + 3c</code></p>
<p> Simplify each expression then determine its value when <code class='latex inline'>x = 4, x = -3</code>, and <code class='latex inline'>x = -1</code>.</p><p><code class='latex inline'> \displaystyle 8x -3 + 4x + 9 </code></p>
<p> If <code class='latex inline'>a = \frac{3}{2}, b = -\frac{7}{4}</code> and <code class='latex inline'>c = \frac{2}{9}</code>, what do the following expressions yield?</p><p><code class='latex inline'>10a + 16b -9c</code></p>
<p>When <code class='latex inline'>x = 2, y = -3</code> and <code class='latex inline'>z = -1</code> find the value of</p><p><code class='latex inline'>x^2 + y^2 + z^2</code></p>
<p>Substitute the given values into each expression. Then, evaluate the expression. Round your answers to the nearest tenth where necessary.</p><p><code class='latex inline'>5a^2</code>; <code class='latex inline'>a = 3</code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle w=\frac{3}{4}, x=8, y=-2 </code>, and <code class='latex inline'>\displaystyle z=0.4 </code></p><p><code class='latex inline'>\displaystyle x^{3}+2 y^{4} </code></p>
<p>Evaluate for <code class='latex inline'>a=-3, b=-1</code>, and <code class='latex inline'>c=2</code>. </p><p><code class='latex inline'>\displaystyle a^{3}-b^{3}+c^{3} </code></p>
<p>If <code class='latex inline'>\displaystyle y=x^{2}+5 </code>, find the value of <code class='latex inline'>\displaystyle y </code> for each of the following values of <code class='latex inline'>\displaystyle x </code>.</p><p><code class='latex inline'>-10</code></p>
<p>Evaluate each expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle (2 a+2 b)^{2} ; a=3, b=4 </code></p>
<p>Substitute the given values into each expression. Then, evaluate the expression. Round your answers to the nearest tenth where necessary.</p><p><code class='latex inline'>c^2-b^2</code>; <code class='latex inline'>b = 5</code>, <code class='latex inline'>c = 13</code></p>
<p>Evaluate each expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle 4 a+7 b+3 a-2 b+2 a ; a=-5 </code> and <code class='latex inline'>\displaystyle b=3 </code></p>
<p><code class='latex inline'>\displaystyle \begin{array}{l} \text { (F) } 14 & \text { G } 28\end{array} </code></p><p> What is the value of <code class='latex inline'> \displaystyle (2 a)^{2} b-2 c^{2} </code> for <code class='latex inline'> \displaystyle a=2, b=4, \text { and } c=3 </code>?</p>
<p>Evaluate each expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle 2 x-y^{2} ; x=7, y=3.5 </code></p>
<p>Find the y value when <code class='latex inline'>x = 7</code>.</p><img src="/qimages/2725" />
<p> Simplify each expression then determine its value when <code class='latex inline'>x = 4, x = -3</code>, and <code class='latex inline'>x = -1</code>.</p><p><code class='latex inline'> \displaystyle 2x - 7 - 6x + 3 </code></p>
<p> Simplify each expression then determine its value when <code class='latex inline'>x = 4, x = -3</code>, and <code class='latex inline'>x = -1</code>.</p><p><code class='latex inline'> \displaystyle -3(3 - x) + 2(3x - 4) </code></p>
<p>If <code class='latex inline'>\displaystyle y=x^{2}+5 </code>, find the value of <code class='latex inline'>\displaystyle y </code> for each of the following values of <code class='latex inline'>\displaystyle x </code>.</p><p><code class='latex inline'>0.5</code></p>
<p>Evaluate the expression when <code class='latex inline'>\displaystyle x=2 </code>.</p><p><code class='latex inline'>\displaystyle 6 x+8 </code></p>
<p>Substitute the given values and evaluate each expression.</p><p><code class='latex inline'>3x + 5, x = 2</code></p>
<p>Evaluate <code class='latex inline'>\displaystyle y=\sqrt{b^{2}\left(1-\frac{x^{2}}{a^{2}}\right)} </code> if <code class='latex inline'>\displaystyle a=6, b=8 </code>, and <code class='latex inline'>\displaystyle x=3 </code>. Round to the nearest tenth.</p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle a=3, b=\frac{2}{3} </code>, and <code class='latex inline'>\displaystyle c=-1.7 </code></p><p><code class='latex inline'>\displaystyle \frac{a \cdot c}{a} </code></p>
<p>If <code class='latex inline'>\displaystyle y=x^{2}+5 </code>, find the value of <code class='latex inline'>\displaystyle y </code> for each of the following values of <code class='latex inline'>\displaystyle x </code>.</p><p><code class='latex inline'>10</code></p>
<p> If <code class='latex inline'>a = -4, b = 7</code>, and <code class='latex inline'>c = -3</code>, what do the following expressions yield?</p><p><code class='latex inline'>4a^2 - 5b^2 + 2c^2</code></p>
<p> If <code class='latex inline'>a = \frac{3}{2}, b = -\frac{7}{4}</code> and <code class='latex inline'>c = \frac{2}{9}</code>, what do the following expressions yield?</p><p><code class='latex inline'>3(2a - 4b) - 7(6a + 8b)</code></p>
<p>Substitute the given values into each expression. Then, evaluate the expression. Round your answers to the nearest tenth where necessary.</p><p><code class='latex inline'>4 \pi r^2</code>; <code class='latex inline'>r = 1.2</code></p>
<p>If <code class='latex inline'>\displaystyle y=x^{2}+5 </code>, find the value of <code class='latex inline'>\displaystyle y </code> for each of the following values of <code class='latex inline'>\displaystyle x </code>.</p><p><code class='latex inline'>2</code></p>
<p>When <code class='latex inline'>x = 2, y = -3</code> and <code class='latex inline'>z = -1</code> find the value of</p><p><code class='latex inline'>\frac{2y + 4z}{-x}</code></p>
<p>Evaluate each expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle (r-t)^{2} ; r=11, t=7 </code></p>
<p>Evaluate each expression for the given values.</p><p><code class='latex inline'> \displaystyle x - 2y</code> when <code class='latex inline'>x = -9.78</code> and <code class='latex inline'>y = 3.2</code></p>
<p>Evaluate each expression for the given value of the variable.</p><p><code class='latex inline'>\displaystyle \frac{5(2 k-3)-3(k+4)}{3 k+2} ; k=-2 </code></p>
<p>For formula <code class='latex inline'>C =\frac{5}{9}(F- 32)</code> is used to convert Fahrenheit temperatures to Celsius. </p><p>Determine the Celsius temperature when <code class='latex inline'>F = 90</code></p>
<p>Substitute the given values and evaluate each expression.</p><p><code class='latex inline'>2m^2 -3n + 8</code>, <code class='latex inline'>m =-2, n = 5</code></p>
<p>The formula to convert temperatures between degrees Celsius and degrees Fahrenheit is <code class='latex inline'>F= \frac{9}{5}C + 32</code>. Use this formula to convert the following.</p><p>The boiling point of water, <code class='latex inline'>100^{o} C</code>, to degrees Fahrenheit.</p>
<p>Evaluate each expression for the given value of the variable.</p><p><code class='latex inline'>\displaystyle 5 c^{3}-6 c^{2}-2 c ; c=-5 </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle w=-3, x=4, y=2.6 </code>, and <code class='latex inline'>\displaystyle z=\frac{1}{3} </code>.</p> <ul> <li><code class='latex inline'>\displaystyle y+x-z </code></li> </ul>
<p>If <code class='latex inline'>\displaystyle m=2 n^{2}-4 n+3 </code>, find the value of <code class='latex inline'>\displaystyle m </code> for each of the following values of <code class='latex inline'>\displaystyle n </code></p><p><code class='latex inline'>1</code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle a=-4, b=-0.8, c=5 </code>, and <code class='latex inline'>\displaystyle d=\frac{1}{5} </code></p><p><code class='latex inline'>\displaystyle \frac{b^{2} c^{2}}{a d} </code></p>
<p>Substitute the given values into each expression. Then, evaluate the expression. Round your answers to the nearest tenth where necessary.</p><p><code class='latex inline'>\dfrac{1}{3}\pi r^2h</code>; <code class='latex inline'>r = 6</code>, <code class='latex inline'>h = 4</code></p>
<p> Simplify each expression then determine its value when <code class='latex inline'>x = 4, x = -3</code>, and <code class='latex inline'>x = -1</code>.</p><p><code class='latex inline'> \displaystyle 7(4x - 3) - 3(5 - 2x) </code></p>
<p>When <code class='latex inline'>x = 2, y = -3</code> and <code class='latex inline'>z = -1</code> find the value of</p><p><code class='latex inline'>\displaystyle \frac{x -y^2}{2z - x + y}</code></p>
<p> Simplify each expression then determine its value when <code class='latex inline'>x = 4, x = -3</code>, and <code class='latex inline'>x = -1</code>.</p><p><code class='latex inline'> \displaystyle -3(4x + 1) - (-21x - 5) </code></p>
<p>Evaluate each expression for s =4 and t =8.</p><p><code class='latex inline'>\displaystyle 2 s^{2}-t^{3} \div 16 </code></p>
<p>Substitute the given values into each expression. Then, evaluate the expression. Round your answers to the nearest tenth where necessary.</p><p><code class='latex inline'>x^2-3x-10</code>; <code class='latex inline'>x = -2</code></p>
<p>Evaluate each expression for x = 3 and y = 4.</p><p><code class='latex inline'>\displaystyle 4 x^{2}-3 x y </code></p>
<p>Substitute the given values and evaluate each expression.</p><p><code class='latex inline'>4y +4, y = -2</code></p>
<p> Simplify each expression then determine its value when <code class='latex inline'>x = 4, x = -3</code>, and <code class='latex inline'>x = -1</code>.</p><p><code class='latex inline'> \displaystyle 5(2x - 3) + 10 - 3x </code></p>
<p>Substitute the given values into each expression. Then, evaluate the expression. Round your answers to the nearest tenth where necessary.</p><p><code class='latex inline'>\pi r^2</code>; <code class='latex inline'>r = 2.5</code></p>
<p>Evaluate each expression for s =4 and t =8.</p><p><code class='latex inline'>\displaystyle s^{4}+t^{2}+s \div 2 </code></p>
<p>When <code class='latex inline'>x = 2, y = -3</code> and <code class='latex inline'>z = -1</code> find the value of</p><p><code class='latex inline'>\displaystyle 2[x-(y-z)^4]</code></p>
<p>Evaluate each expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle (2 x)^{2} y ; x=4, y=8 </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle w=\frac{3}{4}, x=8, y=-2 </code>, and <code class='latex inline'>\displaystyle z=0.4 </code></p><p><code class='latex inline'>\displaystyle 2(6 w-2 y)-8 z </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle a=-2, b=3 </code>, and <code class='latex inline'>\displaystyle c=4.2 </code></p><p><code class='latex inline'>\displaystyle \frac{b^{3}+a c}{a b+2 b c} </code></p>
<p>Evaluate the expression for the given values of the variables.</p><p><code class='latex inline'>\displaystyle \frac{2(x + 5)y}{10(x-4)(y - 2)} </code>, <code class='latex inline'>\displaystyle x = 1 </code> and <code class='latex inline'>\displaystyle y = -2 </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle a=8, b=4 </code>, and <code class='latex inline'>\displaystyle c=16 </code>. <code class='latex inline'>\displaystyle a^{2} b c-b^{2} </code></p>
<p>Evaluate for <code class='latex inline'>a=-3, b=-1</code>, and <code class='latex inline'>c=2</code>. </p><p><code class='latex inline'>\displaystyle (a-b)(b-c) </code></p>
<p>Evaluate for <code class='latex inline'>x=2, y=1, </code> and <code class='latex inline'>z=3</code>. </p><p><code class='latex inline'>\displaystyle (x y z)^{2} </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle w=-3, x=4, y=2.6 </code>, and <code class='latex inline'>\displaystyle z=\frac{1}{3} </code>.</p><p><code class='latex inline'>\displaystyle 4(x-w) </code></p>
<p>Evaluate each expression for s =4 and t =8.</p><p><code class='latex inline'>\displaystyle (2 s)^{2} t </code></p>
<p>Evaluate each expression if <code class='latex inline'>\displaystyle a=-4, b=-0.8, c=5 </code>, and <code class='latex inline'>\displaystyle d=\frac{1}{5} </code></p><p><code class='latex inline'>\displaystyle \frac{5(d+a)}{2 a b^{2}} </code></p>
<p>If <code class='latex inline'>\displaystyle m=2 n^{2}-4 n+3 </code>, find the value of <code class='latex inline'>\displaystyle m </code> for each of the following values of <code class='latex inline'>\displaystyle n </code></p><p><code class='latex inline'>-2</code></p>
<p>Evaluate for <code class='latex inline'>a=-3, b=-1</code>, and <code class='latex inline'>c=2</code>. </p><p><code class='latex inline'>\displaystyle 2 a^{2}+3 b^{2}-c^{2} </code></p>
<p>If <code class='latex inline'>\displaystyle m=2 n^{2}-4 n+3 </code>, find the value of <code class='latex inline'>\displaystyle m </code> for each of the following values of <code class='latex inline'>\displaystyle n </code></p><p><code class='latex inline'>0.5</code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.