17. Q17b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Can you solve the equation <code class='latex inline'>\dfrac{d-3}{5} = 6</code> by adding 3 before multiplying by 5? Explain.</p>
Similar Question 2
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle \frac{y-4}{5} = -6 </code></p>
Similar Question 3
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 3 =\frac{2}{5}(n + 7) </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Solve</p><p><code class='latex inline'> \displaystyle \frac{3p}{4} + \frac{p -5}{3} =\frac{1}{2} </code></p>
<p>Solve each equation. Express fraction answers in lowest terms.</p><p><code class='latex inline'> \displaystyle \frac{1}{3}k + \frac{1}{2} = \frac{1}{4}k </code></p>
<p>Explain why the equations in each group are equivalent equations.</p><p><code class='latex inline'>\frac{x}{4} +5 = \frac{1}{3}</code>, <code class='latex inline'>\frac{3x}{10} + \frac{60}{12} =\frac{4}{12}</code>, and <code class='latex inline'>3x + 60 = 4</code></p>
<p>Find </p> <ul> <li>Common Denominator of All Terms </li> <li>Equation with Denominators Eliminated</li> </ul> <p><code class='latex inline'> \displaystyle -16 = \frac{x }{5} + \frac{x}{3} </code></p>
<p>Solve each equation.</p><p><code class='latex inline'>\frac{2x + 1}{3} = 5</code></p>
<p>List the steps used to solve <code class='latex inline'>\frac{w+3}{5}-4=6</code>.</p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle -14 = \frac{2(h -3)}{5} </code></p>
<p>List the inverse operations and the order in which you would apply them to isolate the variable in each equation.</p><p><code class='latex inline'>\frac{x}{2} + 5 = 11</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle \frac{1}{4}(u - 5) = - 2 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle \frac{y-4}{5} = -6 </code></p>
<p>Solve each equation. Check your answer.</p><p><code class='latex inline'>\dfrac{y-4}{2} = 10</code></p>
<p>Solve each equation. Choose the method you prefer to use. Check your answer.</p><p><code class='latex inline'>\dfrac{1}{4} + \dfrac{4x}{5} = \dfrac{11}{20}</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle \frac{m + 4}{3}= 7 </code></p>
<p>Find the solution of each equation using the given replacement set.</p><p><code class='latex inline'>\frac{2}{5}(x+1)=\frac{8}{15}</code>; {<code class='latex inline'>\frac{1}{6},\frac{1}{3},\frac{1}{2},\frac{2}{3}</code>}</p>
<p>REASONING Identify the property of equality that makes Equation 1 and Equation 2 equivalent. <code class='latex inline'>\displaystyle \text { Equation 1 } \quad x-\frac{1}{2}=\frac{x}{4}+3 </code> Equation 2 <code class='latex inline'>\displaystyle \quad 4 x-2=x+12 </code></p>
<p>Solve each equation.</p><p><code class='latex inline'>\frac{c}{3} -\frac{c}{4} =3</code></p>
<p>Find </p> <ul> <li>Common Denominator of All Terms </li> <li>Equation with Denominators Eliminated</li> </ul> <p><code class='latex inline'> \displaystyle \frac{x - 5}{4} + 1 = \frac{1}{2} </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 16 = \frac{3(v + 7)}{2} </code></p>
<p>Solve each equation.</p><p><code class='latex inline'>\frac{x}{2} + \frac{x}{3} =10</code></p>
<p>Solve each equation. Check your answer.</p><p><code class='latex inline'>\dfrac{2+y}{3} = -1</code></p>
<p>Find </p> <ul> <li>Common Denominator of All Terms </li> <li>Equation with Denominators Eliminated</li> </ul> <p><code class='latex inline'>\frac{3x}{4}+\frac{2}{3} =2</code></p>
<p>Multiply both sides by LCM of the denominators so that the following equation of lines does not have fraction in them. Then convert them to y-intercept form.</p><p><code class='latex inline'> \displaystyle -\frac{1}{12}x - \frac{5}{3}y + \frac{1}{3} = \frac{1}{10} </code></p>
<p>Find </p> <ul> <li>Common Denominator of All Terms </li> <li>Equation with Denominators Eliminated</li> </ul> <p><code class='latex inline'> \displaystyle \frac{y + 2}{3} =\frac{1}{5}(2y + 3) </code></p>
<p>Solve each equation.</p><p><code class='latex inline'>\frac{3k}{5} - 6 = \frac{k}{3}</code></p>
<p>Can you solve the equation <code class='latex inline'>\dfrac{d-3}{5} = 6</code> by adding 3 before multiplying by 5? Explain.</p>
<p>Find </p> <ul> <li>Common Denominator of All Terms </li> <li>Equation with Denominators Eliminated</li> </ul> <p><code class='latex inline'> \displaystyle \frac{1}{2} -\frac{x}{3} = \frac{1}{3} </code></p>
<p>Solve for <code class='latex inline'>x</code>.</p> <ul> <li><code class='latex inline'> \displaystyle \frac{x}{6} - 5 = \frac{1}{4}x </code></li> </ul>
<p>Solve each equation. Choose the method you prefer to use. Check your answer.</p><p><code class='latex inline'>\dfrac{n}{2} - \dfrac{2n}{16} = \dfrac{3}{8}</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 3 =\frac{2}{5}(n + 7) </code></p>
<p>Solve each equation. Choose the method you prefer to use. Check your answer.</p><p><code class='latex inline'>\dfrac{2}{3} + \dfrac{3m}{5} = \dfrac{31}{15}</code></p>
<p>Solve each equation.</p><p><code class='latex inline'>\frac{d}{4} + 3 = 2</code></p>
<p>Find </p> <ul> <li>Common Denominator of All Terms </li> <li>Equation with Denominators Eliminated</li> </ul> <p><code class='latex inline'> \displaystyle \frac{2}{3} = 5 + x </code></p>
<p>Multiply both sides by LCM of the denominators so that the following equation of lines does not have fraction in them. Then convert them to y-intercept form.</p><p><code class='latex inline'> \displaystyle -\frac{11}{12}x + \frac{5}{4}y + \frac{1}{4} = 0 </code></p>
<p>Solve each equation.</p><p><code class='latex inline'>\frac{x}{3} = 2</code></p>
<p>Multiply both sides by LCM of the denominators so that the following equation of lines does not have fraction in them. Then convert them to y-intercept form.</p><p><code class='latex inline'> \displaystyle -\frac{1}{5}x + \frac{2}{21}y = -\frac{3}{7} </code></p>
<p>Solve each equation. Choose the method you prefer to use. Check your answer.</p><p><code class='latex inline'>\dfrac{b}{13} - \dfrac{3b}{13} = \dfrac{8}{13}</code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.