2. Q2a
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle -2u-8 = 5u -1 </code></p>
Similar Question 2
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 4 = -\frac{2}{3}(p - 2) </code></p>
Similar Question 3
<p>Solve each equation. Verify each solution.</p><p><code class='latex inline'>3(c + 5)= 4(1 - 2c)</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 4y -13=-6y + 7 </code></p>
<p>Solve each equation. Check your solution.</p><p><code class='latex inline'>\displaystyle 7 y-2 y+4+3 y=-20 </code></p>
<p>Solve each equation. Check your answer.</p><p><code class='latex inline'>b - 9 + 6b = 30</code></p>
<p>Solve each equation. Then check your solution. </p><p><code class='latex inline'>-7(d-3)=-4</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 2(c + 2)= 5(c+1)-7 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle -2u-8 = 5u -1 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 2(x - 3) + 3(x - 2) = 18 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 4(k - 3) = 2-(2k - 6) </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle -4(u + 6) = 2(3u -4) </code></p>
<p>Solve each equation. Check your answer.</p><p><code class='latex inline'>72 + 4 - 14d = 36</code></p>
<p>Solve. Check your solutions.</p><p><code class='latex inline'> \displaystyle 14 - x(x + 3) = 2x - x(x -6) + 8 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle \frac{1}{3}(x - 2) = 5 </code></p>
<p> Determine if you can apply cross multiplication as it is in the following equations. If you can, apply it and express the equation without any fraction.</p><p><code class='latex inline'> \displaystyle \frac{3x}{2} + \frac{1}{3} = -2 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 3(t-4) = -2(t + 3)+ 14 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 3 + 10i = 4i - 18 </code></p>
<p> Determine if you can apply cross multiplication as it is in the following equations. If you can, apply it and express the equation without any fraction.</p><p><code class='latex inline'> \displaystyle 10 = -\frac{1- x}{2} </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 16y - 8 - 9y=27 </code></p>
<p>Find the root, to one decimal place. Check each answer.</p><p><code class='latex inline'> \displaystyle 3.2x - 7.4 = 2.1x + 1.5 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 7-5m = -2 - 2m </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 2(x - 2) = 4x - 2 </code></p>
<p>Solve each equation. Then check your solution.</p><p><code class='latex inline'>-5=4-2(a-5)</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 4t - 5=2t + 5 </code></p>
<p>Solve each equation. Express fraction answers in lowest terms.</p><p> <code class='latex inline'> \displaystyle \frac{1}{2}(x + 6) = 4(x - 2) </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 8-(3w-2)= -5(w - 3)-(4w-3) </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 3(p + 7)-(4p - 1)= -5(2p -3)+1 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 0=14-x + 6x -9 </code></p>
<p>Solve each equation. Verify each solution.</p><p><code class='latex inline'>-3(5 -6m) = 39</code></p>
<p>The following shows that <code class='latex inline'>x =- 3</code> is the correct solution to the equation <code class='latex inline'>2(x + 4) + 5 = 6 - (x + 2)</code>. Copy this check and explain each step. The first step has been done for you.</p><img src="/qimages/1145" />
<p> Solve for the unknown using the rule of algebra.</p><p><code class='latex inline'> \displaystyle 4a + 4 = 3a - 3 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 6k - 3 - 2k=k - 3 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 11 - n + 3 = 3n + 3n </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 3d + 4 - 9d + 12 =0 </code></p>
<p>Find </p> <ul> <li>Common Denominator of All Terms </li> <li>Equation with Denominators Eliminated</li> </ul> <p><code class='latex inline'> \displaystyle -\frac{2}{5}(x - 8) = 4 </code></p>
<p>Solve each equation. Then check your solution.</p><p><code class='latex inline'>7(d-3)-2=5</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 4 = -\frac{2}{3}(p - 2) </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 4c + 3 = 3(c -4) </code></p>
<p>Solve each equation. Verify each solution.</p><p><code class='latex inline'>3(c + 5)= 4(1 - 2c)</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 6p + 4(8- p)=22 </code></p>
<p>Solve each equation. Verify each solution.</p><p><code class='latex inline'>-5 = 5(3 + 2d)</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'>3 + 4m + 5m =21</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 46=2 - 8w - 3w </code></p>
<p> Determine if you can apply cross multiplication as it is in the following equations. If you can, apply it and express the equation without any fraction.</p><p><code class='latex inline'> \displaystyle \frac{21- 14x}{7} = 2 + x </code></p><p><a href="https://youtu.be/frpEf8DX7Wg">Similar Example</a></p>
<p>Solve each equation. Check your answer.</p><p><code class='latex inline'>17 = p - 3 - 3p</code></p>
<p>Solve each equation. Verify each solution.</p><p><code class='latex inline'>3(x -5) = 6</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 5x + 9=3x + 7 </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 3x - 8 = 7x + 10 </code></p>
<p> Determine if you can apply cross multiplication as it is in the following equations. If you can, apply it and express the equation without any fraction.</p><p><code class='latex inline'> \displaystyle \frac{8 - 14x}{2} = 14 + x </code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle 4(y - 1) - (y - 5) = 10 </code></p>
<p>Solve each equation. Check your answer.</p><p><code class='latex inline'>6p - 2 - 3p = 16</code></p>
<p>Solve for the unknown.</p><p><code class='latex inline'> \displaystyle k = 2(11 -k) + 14 </code></p>
<p>Find the root, to one decimal place. Check each answer.</p><p><code class='latex inline'> \displaystyle 3(2.5d - 1.1) = 2(5.2 -3.3d) </code></p>
<p>Solve. Check your solutions.</p><p><code class='latex inline'> \displaystyle x(x -12) = 30 + x(x + 3) </code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.