Rational Numbers Chapter Review
Chapter
Chapter 1
Section
Rational Numbers Chapter Review
Solutions 50 Videos

Calculate without using a calculator.

\displaystyle 1\frac{2}{3}+9\frac{1}{2} 

0.37mins
Q1a

Calculate without using a calculator.

\displaystyle 8\frac{1}{6}-7\frac{2}{3} 

0.26mins
Q1b

Calculate without using a calculator.

\displaystyle 4\frac{3}{8} + 2\frac{1}{4} 

0.20mins
Q1c

Calculate without using a calculator.

\displaystyle 5\frac{5}{6}-3\frac{3}{4} 

0.32mins
Q1d

Calculate without using a calculator.

\displaystyle 1\frac{3}{4} \times 3\frac{1}{2} 

0.31mins
Q4a

Calculate without using a calculator.

\displaystyle 5\frac{7}{9} \times 6\frac{3}{4} 

0.48mins
Q4b

Calculate without using a calculator.

\displaystyle 1\frac{2}{3} \div 4\frac{5}{6} 

0.42mins
Q4c

Calculate \displaystyle (2\frac{2}{5})^2

0.44mins
Q5

Which of the following explains the two are either same or not same? -8^2 and (-8)^2.

HINT

0.32mins
Q8

Evaluate.

\displaystyle (-8 +2)^2\div (-4 + 2)^2 

0.19mins
Q9a

Evaluate.

\displaystyle \frac{(-16 + 4)\div 2}{8 \div(-8)+ 4} 

0.29mins
Q9b

Evaluate.

\displaystyle 16 -[3(6-3)-12] 

0.33mins
Q9c

Evaluate.

\displaystyle \frac{20+(-12)\div(-3)}{(-4 -12)\div(-2)} 

0.34mins
Q9d

Evaluate.

x^2-4x for x = -3

0.27mins
Q10a

Evaluate.

\displaystyle yx^2 + xy for x = -4 and y = 5

0.34mins
Q10b

Evaluate.

\displaystyle \frac{-x^4-5x}{x + (-1)^3} for x = -2

0.48mins
Q10c

Evaluate.

 \displaystyle \frac{-x^2-y^2}{x^2+y^2} for x = 2 and y = 3

0.26mins
Q10d

What two integers is -2.6 located on the number line.

0.13mins
Q11a

What two integers is -\frac{24}{5} located on the number line.

0.44mins
Q11b

\displaystyle 2\frac{1}{4} - 5\frac{1}{3} 

0.47mins
Q17a

\displaystyle -5\frac{2}{5} + 2\frac{3}{4} 

0.55mins
Q17b

\displaystyle -6\frac{3}{4} (5\frac{1}{9}) 

0.54mins
Q17c

\displaystyle 1\frac{3}{4} \div (-\frac{30}{49}) 

1.20mins
Q17d

Calculate.

6.4 - 4.2 \times 1.5

0.19mins
Q19a

Calculate.

-12.4 + (-16.8)\div (-4.2)

0.13mins
Q19b

Calculate.

\displaystyle \frac{15.3 + 2.7\div 3}{-2 \times 8.1}

0.31mins
Q19c

Calculate.

\displaystyle \frac{16 - 4.8 \times 2.1}{6 + 6 \div (-6)}

0.45mins
Q19d

\displaystyle \frac{2}{5}\div(-\frac{2}{5}+\frac{1}{10}) 

0.49mins
Q20a

\displaystyle -\frac{5}{6}+ \frac{-2}{3}\times \frac{3}{4} 

0.55mins
Q20b

\displaystyle [\frac{1}{8} + (-\frac{2}{3})]\times \frac{12}{13} 

0.43mins
Q20c

\displaystyle -1\frac{1}{2}+ \frac{-1}{-2} -\frac{-3}{5} 

0.35mins
Q20d

[5.12 - 3(4.1)]^3

0.26mins
Q21a

9.1^3 -6.7^2

0.09mins
Q21b

\displaystyle -2\frac{1}{10} + (2\frac{3}{5} - 3\frac{1}{4})^3

2.08mins
Q21c

\displaystyle -\frac{1}{4} \div \frac{5}{4} - 2\frac{1}{3} \div(-\frac{2}{3})^3

2.33mins
Q21d

Mike invests \\$100 in an account earning interest at a rate of 4\% every 6 months. Calculate the value of his investment at the end of 4 years.

1.17mins
Q22

Use >, <, or = to make true statements. Explain how you know each statement is true.

a) \displaystyle (\frac{1}{-2})^3 \bigcirc (\frac{1}{2})^2 

b) \displaystyle (\frac{3}{4})^3 \bigcirc (-\frac{1}{4})^2 

c) \displaystyle (-0.5)^3 \bigcirc (\frac{1}{2})^2 

d) \displaystyle (\frac{3}{2})^3 \bigcirc (-\frac{3}{-2})^4 

2.02mins
Q23

Find the area of the circle using A = \pi r^2 when given each radius

a) r = 5.2 cm

b) r = 2\frac{5}{8} in.

c) r = 8.9 m

d) r = 4\frac{2}{3} in.

Q24

Evaluate each.

\displaystyle 4a^2b^2  when \displaystyle a = \frac{-2}{3}, b = -\frac{1}{2} 

Q25a

Evaluate each.

\displaystyle (2ab)^2  when \displaystyle a = -0.5, b = 1.2 

Q25b

Evaluate each.

\displaystyle (\frac{2a}{5b})^2  when \displaystyle a = 1\frac{1}{2}, b =-\frac{2}{5} 

\displaystyle (3a - 2b)^3  when \displaystyle a = -1.1, b = 2.2