Calculate without using a calculator.
\displaystyle
1\frac{2}{3}+9\frac{1}{2}
Calculate without using a calculator.
\displaystyle
8\frac{1}{6}-7\frac{2}{3}
Calculate without using a calculator.
\displaystyle
4\frac{3}{8} + 2\frac{1}{4}
Calculate without using a calculator.
\displaystyle
5\frac{5}{6}-3\frac{3}{4}
Calculate without using a calculator.
\displaystyle
1\frac{3}{4} \times 3\frac{1}{2}
Calculate without using a calculator.
\displaystyle
5\frac{7}{9} \times 6\frac{3}{4}
Calculate without using a calculator.
\displaystyle
1\frac{2}{3} \div 4\frac{5}{6}
Calculate \displaystyle (2\frac{2}{5})^2
Which of the following explains the two are either same or not same? -8^2
and (-8)^2
.
Evaluate.
\displaystyle
(-8 +2)^2\div (-4 + 2)^2
Evaluate.
\displaystyle
\frac{(-16 + 4)\div 2}{8 \div(-8)+ 4}
Evaluate.
\displaystyle
16 -[3(6-3)-12]
Evaluate.
\displaystyle
\frac{20+(-12)\div(-3)}{(-4 -12)\div(-2)}
Evaluate.
x^2-4x
for x = -3
Evaluate.
\displaystyle
yx^2 + xy
for x = -4
and y = 5
Evaluate.
\displaystyle \frac{-x^4-5x}{x + (-1)^3}
for x = -2
Evaluate.
\displaystyle
\frac{-x^2-y^2}{x^2+y^2}
for x = 2
and y = 3
What two integers is -2.6
located on the number line.
What two integers is -\frac{24}{5}
located on the number line.
Calculate. Show your work.
\displaystyle
2\frac{1}{4} - 5\frac{1}{3}
Calculate. Show your work.
\displaystyle
-5\frac{2}{5} + 2\frac{3}{4}
Calculate. Show your work.
\displaystyle
-6\frac{3}{4} (5\frac{1}{9})
Calculate. Show your work.
\displaystyle
1\frac{3}{4} \div (-\frac{30}{49})
Calculate.
6.4 - 4.2 \times 1.5
Calculate.
-12.4 + (-16.8)\div (-4.2)
Calculate.
\displaystyle \frac{15.3 + 2.7\div 3}{-2 \times 8.1}
Calculate.
\displaystyle \frac{16 - 4.8 \times 2.1}{6 + 6 \div (-6)}
Calculate. Show your work.
\displaystyle
\frac{2}{5}\div(-\frac{2}{5}+\frac{1}{10})
Calculate. Show your work.
\displaystyle
-\frac{5}{6}+ \frac{-2}{3}\times \frac{3}{4}
Calculate. Show your work.
\displaystyle
[\frac{1}{8} + (-\frac{2}{3})]\times \frac{12}{13}
Calculate. Show your work.
\displaystyle
-1\frac{1}{2}+ \frac{-1}{-2} -\frac{-3}{5}
Calculate. Show your steps.
[5.12 - 3(4.1)]^3
Calculate. Show your steps.
9.1^3 -6.7^2
Calculate. Show your steps.
\displaystyle -2\frac{1}{10} + (2\frac{3}{5} - 3\frac{1}{4})^3
Calculate. Show your steps.
\displaystyle -\frac{1}{4} \div \frac{5}{4} - 2\frac{1}{3} \div(-\frac{2}{3})^3
Mike invests \$100
in an account earning interest at a rate of 4\%
every 6 months. Calculate the value of his investment at the end of 4
years.
Use >, <, or = to make true statements. Explain how you know each statement is true.
a) \displaystyle
(\frac{1}{-2})^3 \bigcirc (\frac{1}{2})^2
b) \displaystyle
(\frac{3}{4})^3 \bigcirc (-\frac{1}{4})^2
c) \displaystyle
(-0.5)^3 \bigcirc (\frac{1}{2})^2
d) \displaystyle
(\frac{3}{2})^3 \bigcirc (-\frac{3}{-2})^4
Find the area of the circle using A = \pi r^2
when given each radius
a) r = 5.2 cm
b) r = 2\frac{5}{8}
in.
c) r = 8.9 m
d) r = 4\frac{2}{3}
in.
Evaluate each.
\displaystyle
4a^2b^2
when \displaystyle
a = \frac{-2}{3}, b = -\frac{1}{2}
Evaluate each.
\displaystyle
(2ab)^2
when \displaystyle
a = -0.5, b = 1.2
Evaluate each.
\displaystyle
(\frac{2a}{5b})^2
when \displaystyle
a = 1\frac{1}{2}, b =-\frac{2}{5}
Evaluate each.
\displaystyle
(3a - 2b)^3
when \displaystyle
a = -1.1, b = 2.2