12. Q12
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Graph each pair of lines on the same coordinate grid. Find their slopes and conclude whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>y=-4</code>, <code class='latex inline'>y=x</code></p>
Similar Question 2
<p> Determine if each of the pair of lines is parallel, perpendicular nor neither. If the lines are not parallel.</p><p><code class='latex inline'> \displaystyle \begin{array}{ccc} &x = 2y -1; & 2x - 4y + 4 = 0 \end{array} </code></p>
Similar Question 3
<p>The slopes of two lines are given. Conclude whether the lines are parallel, perpendicular, or neither. Justify your answers.</p><p><code class='latex inline'>m=2</code>, <code class='latex inline'>m=-2</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>What is the slope of a line that is parallel to each line?</p><p>(a) <code class='latex inline'>y=\displaystyle{\frac{3}{5}}x - 2</code></p><p>(b) <code class='latex inline'>y=-x + 7</code></p><p>(c) <code class='latex inline'>2x - y + 3=0</code></p><p>(d) <code class='latex inline'>4x + 3y=12</code></p><p>(e) <code class='latex inline'>y=2</code></p><p>(f) <code class='latex inline'>x=-5</code></p>
<p>The slopes of two lines are given. Conclude whether the lines are parallel, perpendicular, or neither. Justify your answers.</p><p><code class='latex inline'>m=\displaystyle{\frac{1}{5}}</code>, <code class='latex inline'>m=0.2</code></p>
<p><code class='latex inline'>\mathrm{\overline{AM}}</code> is a median. Show that <code class='latex inline'>\mathrm{\overline{AM}}</code> is perpendicular to <code class='latex inline'>\mathrm{\overline{BC}}</code>.</p><img src="/qimages/1408" />
<p>For the given vertices, determine whether or not <code class='latex inline'>\triangle</code> ABC is a right triangle.</p><p><code class='latex inline'>A(13, 3), B(3, 5)</code>, and <code class='latex inline'>C(-2, -20)</code></p>
<p> Determine if each of the pair of lines is parallel, perpendicular nor neither. </p><p><code class='latex inline'> \begin{array}{cc} &2x + y = -1, & -x + 2y = 0 \\ \end{array}</code></p>
<p>For the pair of equations, state whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>y=\frac{3}{7}x - 4</code></p><p><code class='latex inline'>y=-\frac{3}{7}x - 4</code></p>
<p>For the pair of equations, state whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>y=\frac{2}{3}x - 2</code> </p><p><code class='latex inline'>y=-1.5x - 6</code></p>
<p>ABCD is a rhombus. Show that the diagonals of the rhombus are perpendicular to each other.</p><img src="/qimages/1407" />
<p>Graph each pair of lines on the same coordinate grid. Find their slopes and conclude whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>y=2x + 5</code>, <code class='latex inline'>4x - 2y + 6=0</code></p>
<p> Determine if each of the pair of lines is parallel, perpendicular nor neither. </p><p><code class='latex inline'> \begin{array}{cc} &-3x = y -1 & -x + 3y + 4 = 0 \\ \end{array}</code></p>
<p> Determine if each of the pair of lines is parallel, perpendicular nor neither. If the lines are not parallel.</p><p><code class='latex inline'> \displaystyle \begin{array}{ccc} &x = 2y -1; & 2x - 4y + 4 = 0 \end{array} </code></p>
<p>The slopes of two lines are given. Conclude whether the lines are parallel, perpendicular, or neither. Justify your answers.</p><p><code class='latex inline'>m=1</code>, <code class='latex inline'>m=-1</code></p>
<p><code class='latex inline'>A</code> and <code class='latex inline'>k</code> are one-digit numbers. Given two lines, <code class='latex inline'>Ax - 3y + 15=0</code> and <code class='latex inline'>y=kx + 7</code>, determine the number of pairs of values of <code class='latex inline'>A</code> and <code class='latex inline'>k</code> for which the two lines are</p> <ul> <li>coincident (the same line)</li> </ul>
<p>For the pair of equations, state whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>x - 5y + 8=0</code> <code class='latex inline'>5x - y=0</code></p>
<p>Determine whether the graphs of the given equations are parallel, perpendicular, or neither. Explain.</p><p><code class='latex inline'>\displaystyle y=-2 x+3 </code></p><p><code class='latex inline'>\displaystyle 2 x+y=7 </code></p>
<p>For the pair of equations, state whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>x - 4y=2</code> <code>2x - 8y=3\$</code></p>
<p>Five the slope of a perpendicular line.</p><p>(a) <code class='latex inline'>y=\displaystyle{\frac{3}{5}}x - 2</code></p><p>(b) <code class='latex inline'>y=-x + 7</code></p><p>(c) <code class='latex inline'>2x - y + 3=0</code></p><p>(d) <code class='latex inline'>4x + 3y=12</code></p><p>(e) <code class='latex inline'>y=2</code></p>
<p>a) Graph this pair of lines and identify their x- and y-intercepts.</p><p><code class='latex inline'>2x+7y=14</code>, <code class='latex inline'>7x-2y=-14</code></p><p>b) Describe how you can use intercepts to quickly find a line that is perpendicular to a given line. Create an example of your own to support your explanation. </p>
<p>Determine whether or not the following sets of points form right triangles. Justify your answers with mathematical reasoning.</p><p> <code class='latex inline'>A(1, 1), B(-2, 5), C(3, -2)</code></p>
<p>Show algebraically that the points <code class='latex inline'>A(-4, 7), B(6.5, 1), C(-8, 0)</code>, and <code class='latex inline'>D(2.5, -6)</code> form a rectangle. </p>
<p>Graph each pair of lines on the same coordinate grid. Find their slopes and conclude whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>y=\displaystyle{\frac{1}{4}}x - 2</code>, <code class='latex inline'>y=\displaystyle{\frac{1}{4}}x + 3</code></p>
<p><code class='latex inline'>A</code> and <code class='latex inline'>k</code> are one-digit numbers. Given two lines, <code class='latex inline'>Ax - 3y + 15=0</code> and <code class='latex inline'>y=kx + 7</code>, determine the number of pairs of values of <code class='latex inline'>A</code> and <code class='latex inline'>k</code> for which the two lines are</p> <ul> <li>perpendicular</li> </ul>
<p>Determine whether or not the following sets of points form right triangles. Justify your answers with mathematical reasoning.</p><p><code class='latex inline'>P(2, 4), Q(-2, 2), R(5, -2)</code></p>
<p>Are the lines defined by the equations <code class='latex inline'>y=4</code> and <code class='latex inline'>x=3</code> parallel, perpendicular, or neither? Explain. </p>
<p><code class='latex inline'>\triangle</code> KLM has vertices K(-2,3) and L(-6,-2).</p><p>(a) Find the coordinates of M such that <code class='latex inline'>\triangle</code> KLM is a right triangle.</p><p>(b) Is there more than one solution? Explain.</p>
<p>Graph each pair of lines on the same coordinate grid. Find their slopes and conclude whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>x=5</code>, <code class='latex inline'>x=0</code></p>
<p>Write the equations of two lines that are parallel to the line <code class='latex inline'>3x - 6y - 5=0</code></p>
<p>Graph each pair of lines on the same coordinate grid. Find their slopes and conclude whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>y=\displaystyle{\frac{1}{2}}x - 4</code>, <code class='latex inline'>x - 2y + 1=0</code></p>
<p> Determine if each of the pair of lines is parallel, perpendicular nor neither. If the lines are not parallel.</p><p><code class='latex inline'> \displaystyle \begin{array}{ccc} &2x + y = -1 & -x + 2y = 0 \end{array} </code></p>
<p>Graph this pair of lines and identify their x- and y-intercepts.</p><p><code class='latex inline'>3x + 5y=15</code>, <code class='latex inline'>5x - 3y=-15</code></p>
<p> Determine if each of the pair of lines is parallel, perpendicular nor neither. </p><p><code class='latex inline'> \begin{array}{cc} &-2x - y = -1, & -x + 4y + 4 = 0 \end{array}</code></p>
<p>For the pair of equations, state whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>y=2x+5</code></p><p><code class='latex inline'>y=-\frac{1}{2}x - 4</code></p>
<p>Graph each pair of lines on the same coordinate grid. Find their slopes and conclude whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>x + y=4</code>, <code class='latex inline'>y=x - 3</code></p>
<p>A triangle has vertices <code class='latex inline'>A(1, 2), B(3, 8)</code>, and <code class='latex inline'>C(6, 7)</code>.</p><p>i) Plot the points. Does this appear to be a right triangle? Explain</p><p>ii) Find the slopes of the line segments that form this triangle.</p><p>iii) Explain how the slopes can be used to conclude whether or not this is a right triangle. Is it? </p>
<p><code class='latex inline'>A</code> and <code class='latex inline'>k</code> are one-digit numbers. Given two lines, <code class='latex inline'>Ax - 3y+15=0</code> and <code class='latex inline'>y=kx + 7</code>, determine the number of pairs of values of <code class='latex inline'>A</code> and <code class='latex inline'>k</code> for which the two lines are</p> <ul> <li>parallel</li> </ul>
<p> Determine if each of the pair of lines is parallel, perpendicular nor neither. If the lines are not parallel.</p><p><code class='latex inline'> \displaystyle \begin{array}{ccc} &-3x = y -1; & -x + 3y + 4 = 0 \end{array} </code></p>
<p> Determine if each of the pair of lines is parallel, perpendicular nor neither. If the lines are not parallel.</p><p><code class='latex inline'> \displaystyle \begin{array}{ccc} & -2x - y = -1; & -x + 4y + 4 = 0 \end{array} </code></p>
<p>Identify each pair of parallel lines. Then identify each pair of perpendicular lines.</p><p><code class='latex inline'>\displaystyle a: y=3 x+3 </code></p><p><code class='latex inline'>\displaystyle b: x=-1 \quad\\c: y-5=\frac{1}{2}(x-2) </code></p><p>line <code class='latex inline'> d: y=3 </code> </p><p><code class='latex inline'>\displaystyle e: y+4=-2(x+6) \quad\\f: 9 x-3 y=5 </code></p>
<p>Determine whether the graphs of the given equations are parallel, perpendicular, or neither. Explain.</p><p><code class='latex inline'>\displaystyle y-4=3(x+2) </code></p><p><code class='latex inline'>\displaystyle 2 x+6 y=10 </code></p>
<p>Write the equations of two lines that are perpendicular to the <code class='latex inline'>4x + y - 2=0</code>.</p>
<p>Determine which of the following lines are parallel and which are perpendicular to each other. </p><p>(a) <code class='latex inline'>y=-\frac{1}{3}x + 2</code></p><p>(b) <code class='latex inline'>y=-3x+2</code></p><p>(c) <code class='latex inline'>y=\frac{7}{2}x - 4</code></p><p>(d) <code class='latex inline'>y=\frac{2}{7}x - 3</code></p><p>(e) <code class='latex inline'>y=\frac{1}{3}x + 1</code></p><p>(f) <code class='latex inline'>y=\frac{1}{-3}x - 8</code></p><p>(g) <code class='latex inline'>y=\frac{-3}{9}x</code></p><p>(h) <code class='latex inline'>y=\frac{-2}{7}x - 9</code></p>
<p>The slopes of two lines are given. Conclude whether the lines are parallel, perpendicular, or neither. Justify your answers.</p><p><code class='latex inline'>m=2\displaystyle{\frac{1}{4}}</code>, <code class='latex inline'>m=-\displaystyle{\frac{4}{9}}</code></p>
<p>The following set of points define the endpoints of line segments. Determine which line segments are parallel and which line segments are perpendicular.</p><p><code class='latex inline'>A(6, 5)</code> and <code class='latex inline'>B(12, 3)</code></p><p><code class='latex inline'>P(-3, -4)</code> and <code class='latex inline'>Q(5, 20)</code></p><p><code class='latex inline'>G(0, -4)</code> and <code class='latex inline'>H(6, -2)</code></p><p><code class='latex inline'>U(-5, 9)</code> and <code class='latex inline'>V(-6, 12)</code></p><p><code class='latex inline'>K(2, 4)</code> and <code class='latex inline'>L(6, 16)</code></p>
<p>Graph each pair of lines on the same coordinate grid. Find their slopes and conclude whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>y=3</code> , <code class='latex inline'>x=-2</code></p>
<p>The slopes of two lines are given. Conclude whether the lines are parallel, perpendicular, or neither. Justify your answers.</p><p><code class='latex inline'>m=\displaystyle{\frac{3}{4}}</code>, <code class='latex inline'>m=-\displaystyle{\frac{4}{3}}</code></p>
<p>Using intercepts, graph the three lines <code class='latex inline'>4x + y - 8=0</code>, <code class='latex inline'>2x - y - 4=0</code>, and <code class='latex inline'>x + 2y - 16=0</code> on the same coordinate grid.</p><p>i. The three lines form a triangle. Does this triangle appear to be a right triangle?</p><p>ii. Using slopes, explain how you can be sure of your conclusion in part i).</p>
<p>The slopes of two lines are given. Conclude whether the lines are parallel, perpendicular, or neither. Justify your answers.</p><p><code class='latex inline'>m=\displaystyle{\frac{2}{3}}</code>, <code class='latex inline'>m=\displaystyle{\frac{4}{6}}</code></p>
<p>For the pair of equations, state whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>y=-0.2x - 1</code></p><p><code class='latex inline'>y=-\frac{1}{5}x + 3</code></p>
<p>Graph each pair of lines on the same coordinate grid. Find their slopes and conclude whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>y=-4</code>, <code class='latex inline'>y=x</code></p>
<p> Determine if each of the pair of lines is parallel, perpendicular nor neither. </p><p><code class='latex inline'> \begin{array}{cc} &x = 2y -1 & 2x - 4y + 4 = 0 \\ \end{array}</code></p>
<p>Graph each pair of lines on the same coordinate grid. Find their slopes and conclude whether the lines are parallel, perpendicular, or neither.</p><p><code class='latex inline'>y=x + 1</code>, <code class='latex inline'>y=-x</code></p>
<p>For the given vertices, determine whether or not <code class='latex inline'>\triangle</code> ABC is a right triangle.</p><p><code class='latex inline'>A(5, 4), B(-1, 2)</code>, and <code class='latex inline'>C(2, -1)</code></p>
<p>Determine whether the graphs of the given equations are parallel, perpendicular, or neither. Explain.</p><p><code class='latex inline'>\displaystyle y=x+11 </code></p><p><code class='latex inline'>\displaystyle y=-x+2 </code></p>
<p>The slopes of two lines are given. Conclude whether the lines are parallel, perpendicular, or neither. Justify your answers.</p><p><code class='latex inline'>m=2</code>, <code class='latex inline'>m=-2</code></p>
<p>Using intercepts, graph the three lines <code class='latex inline'>4x + y - 8=0</code>, <code class='latex inline'>2x - y - 4=0</code>, and <code class='latex inline'>x + 2y - 16=0</code> on the same coordinate grid.</p> <ul> <li>The three lines form a triangle. Does this triangle appear to be a right triangle?</li> </ul>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.