4. Q4b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Solve the following inequality.</p><p><code class='latex inline'>\displaystyle 4 x-5 < -2(x+1) </code></p>
Similar Question 2
<p>Consider the following graph.</p><img src="/qimages/432" /><p>Write an inequality that is modeled by the graph.</p><p>Find the solution by examining the graph.</p>
Similar Question 3
<p>Solve each inequality. Show each solution on a number line.</p><p><code class='latex inline'>x + 3 \leq 5</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p><code class='latex inline'>\displaystyle 6[5 y-(3 y-1)] \geq 4(3 y-7) </code></p>
<p><code class='latex inline'>\displaystyle 5 y-10 < 20 </code></p>
<p>Solve the inequalities algebraically. State your answers using interval notation.</p><p><code class='latex inline'>\displaystyle \frac{x -4}{5} \geq \frac{2x + 3}{2} </code></p>
<p>Consider the following graph.</p><img src="/qimages/432" /><p>Write an inequality that is modeled by the graph.</p><p>Find the solution by examining the graph.</p>
<p>For the following inequalities, determine if 0 is a number in the solution set.</p><p><code class='latex inline'> 3x \leq x+1 \leq x-1</code></p>
<p>Solve the inequalities algebraically. State your answers using set notation.</p><p><code class='latex inline'>\displaystyle x + 1 < 2x + 7 < x + 5 </code></p>
<p>List the conditions under which the product <code class='latex inline'>ab</code> is negative. Give examples to support your answer.</p>
<p><code class='latex inline'>\displaystyle 6(x-2.5) \geq 8-6(3.5+x) </code></p>
<p>Solve each inequality. Show each solution on a number line.</p><p><code class='latex inline'>x + 3 \leq 5</code></p>
<p>Solve the inequalities algebraically. State your answers using interval notation.</p><p><code class='latex inline'>\displaystyle -x + 2 > x -2 </code></p>
<p><code class='latex inline'>\displaystyle 4 x \leq 12 </code> and <code class='latex inline'>\displaystyle -7 x \leq 21 </code></p>
<p>For each of the following inequalities, determine whether <code class='latex inline'>x = 2</code> is contained in the solution set.</p><p><code class='latex inline'>5x+3\leq-3x+1</code></p>
<p>For each of the following inequalities, determine whether <code class='latex inline'>x = 2</code> is contained in the solution set.</p><p><code class='latex inline'>33<-10x+3<54</code></p>
<p>Solve the inequality.</p><p><code class='latex inline'>\displaystyle \frac{a- x}{2} + 1 > a, a> 0 </code></p>
<p>Solve the inequalities algebraically. State your answers using interval notation.</p><p><code class='latex inline'>\displaystyle 2(4x - 7) > 4(x + 9) </code></p>
<p>For the following inequalities, determine if 0 is a number in the solution set.</p><p><code class='latex inline'> -6x < x+4 < 12 </code></p>
<p>For each of the following inequalities, determine whether <code class='latex inline'>x = 2</code> is contained in the solution set.</p><p><code class='latex inline'>x-2\leq 3x+4\leq x+14</code></p>
<p>Solve for x.</p><p><code class='latex inline'>\displaystyle -4(5-3 x) < 2(3 x+8) </code></p>
<p>Solve the following inequality.</p><p><code class='latex inline'>\displaystyle 4 x-5 < -2(x+1) </code></p>
<p>Reasoning Is it possible for</p><p>an exponential equation to</p><p>have no solutions? If so, give an</p><p>example. If not, explain why.</p>
<p>Solve the inequality.</p><p><code class='latex inline'> \displaystyle 6 + 2x \geq 0 \geq -10 + 2x </code></p>
<p><code class='latex inline'>\displaystyle \begin{aligned} \frac{1}{2}(y+3) &>\frac{1}{3}(4-y) \\ 3(y+3) &>2(4-y) \\ 3 y+9 &>8-2 y \\ 5 y+9 &>8 \\ 5 y &>-1 \\ y &>-0.2 \end{aligned} </code></p>
<p>Solve the inequalities algebraically. State your answers using interval notation.</p><p><code class='latex inline'>\displaystyle 5x -7 \leq 2x + 2 </code></p>
<p>For each of the following inequalities, determine whether <code class='latex inline'>x = 2</code> is contained in the solution set.</p><p><code class='latex inline'>5x-4>3x+2</code></p>
<p>For each of the following inequalities, determine whether <code class='latex inline'>x = 2</code> is contained in the solution set.</p><p><code class='latex inline'>4(3x-5)\geq 6x</code></p>
<p>Describe what the solution to each inequality indicates about the graph of <code class='latex inline'>y=f(x)</code>.</p><p><code class='latex inline'>f(x) \geq 0</code> when <code class='latex inline'>x \leq -3.6</code> or <code class='latex inline'>0 \leq x \leq 4.7</code> or <code class='latex inline'>x \geq 7.2</code></p>
<p>Solve the inequalities algebraically. State your answers using set notation.</p><p><code class='latex inline'>\displaystyle 8 \leq -x + 8 \leq 9 </code></p>
<p>Solve the following inequality.</p><p><code class='latex inline'>\displaystyle -4 \leq-(3 x+1) \leq 5 </code></p>
<p>Find the solution set for <code class='latex inline'>\frac{(5\cdot n)^2+5}{(9\cdot3^2)-n}<28</code> if the replacement set is {<code class='latex inline'>5, 7, 9, 11, 13</code>}.</p><p>A. {5}</p><p>B. {5,7}</p><p>C. {7}</p><p>D. {7,9}</p>
<p>Solve each equation or inequality.</p><p><code class='latex inline'>\displaystyle 2-3 x < 11 </code></p>
<p>Solve the inequalities algebraically. State your answers using set notation.</p><p><code class='latex inline'>\displaystyle -3 < 2x + 1 < 9 </code></p>
<p><code class='latex inline'>\displaystyle 4 a+6 > 2 a+14 </code></p>
<p>For each of the following inequalities, determine whether <code class='latex inline'>x = 2</code> is contained in the solution set.</p><p><code class='latex inline'>x > -1</code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! 👉
Save videos to My Cheatsheet for later, for easy studying.