7. Q7b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>For each function <code class='latex inline'>g(x)</code>, identify the base function as one of <code class='latex inline'>f(x)=x</code>, <code class='latex inline'>f(x)=x^2</code>, <code class='latex inline'>f(x)=\sqrt{x}</code>, and <code class='latex inline'>\displaystyle{f(x)=\frac{1}{x}}</code> and describe the transformation first in the form <code class='latex inline'>y=f(x-d)+c</code> and then in words. Transform the graph of <code class='latex inline'>f(x)</code> to sketch the graph of <code class='latex inline'>g(x)</code> and then state the domain and range of each function.</p><p><code class='latex inline'>\displaystyle{g(x)=\frac{1}{x}+5}</code></p>
Similar Question 2
<p>Sketch the graph.</p><p><code class='latex inline'>\displaystyle f(x) = \frac{1}{x - 5}</code></p>
Similar Question 3
<p>For each reciprocal function, </p> <ul> <li>i) write an equation to represent the vertical asymptote </li> <li>ii) write an equation not represent the horizontal asymptote</li> <li>iii) determine the y-intercept</li> </ul> <p><code class='latex inline'>\displaystyle f(x) = \frac{1}{ x + 7}</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>For each function <code class='latex inline'>g(x)</code>, identify the base function as one of <code class='latex inline'>f(x)=x</code>, <code class='latex inline'>f(x)=x^2</code>, <code class='latex inline'>f(x)=\sqrt{x}</code>, and <code class='latex inline'>\displaystyle{f(x)=\frac{1}{x}}</code> and describe the transformation first in the form <code class='latex inline'>y=f(x-d)+c</code> and then in words. Transform the graph of <code class='latex inline'>f(x)</code> to sketch the graph of <code class='latex inline'>g(x)</code> and then state the domain and range of each function.</p><p><code class='latex inline'>\displaystyle{g(x)=\frac{1}{x}+5}</code></p>
<p>Sketch the function and then describe the intervals where the slope is increasing and the intervals where it is decreasing.</p><p><code class='latex inline'>\displaystyle f(x) = \frac{1}{x - 3}</code></p>
<p>For each reciprocal function, </p> <ul> <li>i) write an equation to represent the vertical asymptote </li> <li>ii) write an equation not represent the horizontal asymptote</li> <li>iii) determine the y-intercept</li> </ul> <p><code class='latex inline'>\displaystyle f(x) = \frac{1}{x - 5}</code></p>
<p>Describe the transformations that you would apply to the graph of <code class='latex inline'>f(x) = \frac{1}{x}</code> to transform it into each of these graphs.</p><p><code class='latex inline'> \displaystyle y=\frac{1}{x} + 2 </code></p>
<p>Sketch the graph.</p><p><code class='latex inline'>\displaystyle f(x) = \frac{1}{x - 5}</code></p>
<ol> <li>State the domain, </li> <li>Range, and </li> <li>equations of the asymptotes and </li> <li>the x and y intercepts</li> </ol> <p><code class='latex inline'>\displaystyle f(x) = \frac{1}{x - 1}</code></p>
<p>Use the base function <code class='latex inline'>\displaystyle{f(x)=\frac{1}{x}}</code>. Write the equation for each transformed function.</p><p><strong>(a)</strong> <code class='latex inline'>n(x)=f(x-4)-6</code></p><p><strong>(b)</strong> <code class='latex inline'>r(x)=f(x+2)+9</code></p><p><strong>(c)</strong> <code class='latex inline'>s(x)=f(x+6)-7</code></p><p><strong>(d)</strong> <code class='latex inline'>t(x)=f(x-11)+4</code></p>
<p>For each reciprocal function, </p> <ul> <li>i) write an equation to represent the vertical asymptote </li> <li>ii) write an equation not represent the horizontal asymptote</li> <li>iii) determine the y-intercept</li> </ul> <p><code class='latex inline'>\displaystyle f(x) = \frac{1}{ x + 7}</code></p>
<ol> <li>State the domain, </li> <li>Range, and </li> <li>equations of the asymptotes and </li> <li>the x and y intercepts</li> </ol> <p><code class='latex inline'>\displaystyle f(x) = \frac{1}{x + 4}</code></p>
<p>Determine a possible equation to repent each function shown.</p><img src="/qimages/6687" />
<p>Describe the transformations that you would apply to the graph of <code class='latex inline'>f(x) = \frac{1}{x}</code> to transform it into each of these graphs.</p><p><code class='latex inline'> \displaystyle y = \frac{1}{x -2} </code></p>
<p>For each function <code class='latex inline'>g(x)</code>, identify the base function as one of <code class='latex inline'>f(x)=x</code>, <code class='latex inline'>f(x)=x^2</code>, <code class='latex inline'>f(x)=\sqrt{x}</code>, and <code class='latex inline'>\displaystyle{f(x)=\frac{1}{x}}</code> and describe the transformation first in the form <code class='latex inline'>y=f(x-d)+c</code> and then in words. Transform the graph of <code class='latex inline'>f(x)</code> to sketch the graph of <code class='latex inline'>g(x)</code> and then state the domain and range of each function.</p><p><code class='latex inline'>\displaystyle{g(x)=\frac{1}{x+3}-8}</code></p>
<p>For each function <code class='latex inline'>g(x)</code>, identify the base function as one of <code class='latex inline'>f(x)=x</code>, <code class='latex inline'>f(x)=x^2</code>, <code class='latex inline'>f(x)=\sqrt{x}</code>, and <code class='latex inline'>\displaystyle{f(x)=\frac{1}{x}}</code> and describe the transformation first in the form <code class='latex inline'>y=f(x-d)+c</code> and then in words. Transform the graph of <code class='latex inline'>f(x)</code> to sketch the graph of <code class='latex inline'>g(x)</code> and then state the domain and range of each function.</p><p><code class='latex inline'>\displaystyle{g(x)=\frac{1}{x-2}}</code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.