25. Q25
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>The midpoint <code class='latex inline'>M</code> and one endpoint of <code class='latex inline'>GH</code> are given. Find the coordinates of the other endpoint. </p><p><code class='latex inline'>H(-3,7)</code> and <code class='latex inline'>M(-2,5)</code></p>
Similar Question 2
<p>The endpoints of <code class='latex inline'>\overline{CD}</code> are given. Find the coordinates of the midpoint <code class='latex inline'>M</code>. </p><p><code class='latex inline'>C(-4,7)</code> and <code class='latex inline'>D(0,-3)</code></p>
Similar Question 3
<p>The midpoint <code class='latex inline'>M</code> and one endpoint of <code class='latex inline'>GH</code> are given. Find the coordinates of the other endpoint. </p><p><code class='latex inline'>H(-2,9)</code> and <code class='latex inline'>M(8,0)</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>The endpoints of <code class='latex inline'>\overline{CD}</code> are given. Find the coordinates of the midpoint <code class='latex inline'>M</code>. </p><p><code class='latex inline'>C(3,-5)</code> and <code class='latex inline'>D(7,9)</code></p>
<p>Identify the segment bisector of <code class='latex inline'>\overline{JK}</code>. Then find <code class='latex inline'>JM</code>. </p><img src="/qimages/26993" />
<p>Find the area of the polygon with the given vertices. </p><p><code class='latex inline'>J(-3,4), K(4,4), L(3,-3)</code></p>
<p>Find the area of the polygon with the given vertices. </p><p><code class='latex inline'>E(3,1), F(3,-2), G(-2,-2)</code></p>
<p>Identify the segment bisector of <code class='latex inline'>\overline{JK}</code>. Then find <code class='latex inline'>JM</code>. </p><img src="/qimages/26994" />
<p>The midpoint <code class='latex inline'>M</code> and one endpoint of <code class='latex inline'>GH</code> are given. Find the coordinates of the other endpoint. </p><p><code class='latex inline'>H(-2,9)</code> and <code class='latex inline'>M(8,0)</code></p>
<p>Identify the segment bisector of <code class='latex inline'>\overline{XY}</code>. Then find <code class='latex inline'>XY</code>. </p><img src="/qimages/26996" />
<p>Identify the segment bisector of <code class='latex inline'>\overline{RS}</code>. Then find <code class='latex inline'>RS</code>. </p><img src="/qimages/26990" />
<p>Find the perimeter of the polygon with the given vertices.</p><p><code class='latex inline'>X(-1,3), Y(3,0), Z(-1,-2)</code></p>
<p>Identify the segment bisector of <code class='latex inline'>\overline{RS}</code>. Then find <code class='latex inline'>RS</code>. </p><img src="/qimages/26989" />
<p>List the steps for solving the equation <code class='latex inline'>\displaystyle x^{2}-9=-8 x </code> by the completing the square method. Explain each step.</p>
<p>Identify the segment bisector of <code class='latex inline'>\overline{RS}</code>. Then find <code class='latex inline'>RS</code>. </p><img src="/qimages/26992" />
<p>The endpoints of two segments are given. Find each segment length. Tell whether the segments are congruent. If they are not congruent, state which segment length is greater. </p><p><code class='latex inline'>\overline{EF}: E(1,4), F(5,1)</code> and <code class='latex inline'>\overline{GH}: G(-3,1), H(1,6)</code></p>
<p>Find the perimeter of the polygon with the given vertices.</p><p><code class='latex inline'>Q(-3,2), R(1,2), S(1,-2), T(-3,-2)</code></p>
<p>The endpoints of <code class='latex inline'>\overline{CD}</code> are given. Find the coordinates of the midpoint <code class='latex inline'>M</code>. </p><p><code class='latex inline'>C(-2,0)</code> and <code class='latex inline'>D(4,9)</code></p>
<p>The midpoint <code class='latex inline'>M</code> and one endpoint of <code class='latex inline'>GH</code> are given. Find the coordinates of the other endpoint. </p><p><code class='latex inline'>G(-4,1)</code> and <code class='latex inline'>M(-\frac{13}{2}, -6)</code></p>
<p>The endpoints of <code class='latex inline'>\overline{CD}</code> are given. Find the coordinates of the midpoint <code class='latex inline'>M</code>. </p><p><code class='latex inline'>C(-4,7)</code> and <code class='latex inline'>D(0,-3)</code></p>
<p>The length of <code class='latex inline'>\overline{XY}</code> is 24 centimetres. The midpoint of <code class='latex inline'>\overline{XY}</code> is <code class='latex inline'>M</code>, and <code class='latex inline'>C</code> is on <code class='latex inline'>\overline{XM}</code> so that <code class='latex inline'>XC</code> is <code class='latex inline'>\frac{2}{3}</code> of <code class='latex inline'>XM</code>. Point <code class='latex inline'>D</code> is on <code class='latex inline'>\overline{MY}</code> so that <code class='latex inline'>MD</code> is <code class='latex inline'>\frac{3}{4}</code> of <code class='latex inline'>MY</code>. What is the length of <code class='latex inline'>\overline{CD}</code>?</p>
<p>Two points are located at <code class='latex inline'>(a,c) </code> and <code class='latex inline'>(b,c)</code>. Find the midpoint and the distance between the two points. </p>
<p>A grocer has <code class='latex inline'>c</code> pounds of coffee divided equally among <code class='latex inline'>k</code> sacks. She finds <code class='latex inline'>n</code> empty sacks and decides to redistribute the coffee equally among the <code class='latex inline'>k + n</code> sacks. When this is done, how many fewer pounds of coffee does each of the original sacks hold?</p>
<p>Find the area of the polygon with the given vertices. </p><p><code class='latex inline'>N(-2,1), P(3,1), Q(3,-1), R(-2,-1)</code></p>
<p>The endpoints of <code class='latex inline'>\overline{CD}</code> are given. Find the coordinates of the midpoint <code class='latex inline'>M</code>. </p><p><code class='latex inline'>C(-8,-6)</code> and <code class='latex inline'>D(-4,10)</code></p>
<p>Triangle <code class='latex inline'>ABC</code> has a perimeter of 12 units. The vertices of the triangle are <code class='latex inline'>A(x,2), B(2,-2)</code>, and <code class='latex inline'>C(-1,2)</code>. Find the value of <code class='latex inline'>x</code>. </p>
<p>The endpoints of two segments are given. Find each segment length. Tell whether the segments are congruent. If they are not congruent, state which segment length is greater. </p><p><code class='latex inline'>\overline{AB}: A(0,2), B(-3,8)</code> and <code class='latex inline'>\overline{CD}: C(-2,2), D(0,-4)</code></p>
<p>Identify the segment bisector of <code class='latex inline'>\overline{XY}</code>. Then find <code class='latex inline'>XY</code>. </p><img src="/qimages/26995" />
<p>Find the area of the polygon with the given vertices. </p><p><code class='latex inline'>W(0,0), X(0,3), Y(-3,3), Z(-3,0)</code></p>
<p>Find the perimeter of the polygon with the given vertices.</p><p><code class='latex inline'>G(2,4), H(2,-3), J(-2,-3), K(-2,4)</code></p>
<p>The midpoint <code class='latex inline'>M</code> and one endpoint of <code class='latex inline'>GH</code> are given. Find the coordinates of the other endpoint. </p><p><code class='latex inline'>G(5,-6)</code> and <code class='latex inline'>M(4,3)</code></p>
<p>The midpoint <code class='latex inline'>M</code> and one endpoint of <code class='latex inline'>GH</code> are given. Find the coordinates of the other endpoint. </p><p><code class='latex inline'>H(-3,7)</code> and <code class='latex inline'>M(-2,5)</code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.