2. Q2a
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Determine whether the relation is a function, and state its domain and range. Show your work.</p><p><code class='latex inline'>x^2 = 2y + 1</code></p>
Similar Question 2
<p>Determine whether the relation is a function, and state its domain and range. Show your work.</p><p><code class='latex inline'>x^2 = 2y + 1</code></p>
Similar Question 3
<p>State the domain and range of the relation. Then determine whether the relation is a function, and justify your answer.</p><p><code class='latex inline'> \displaystyle y = -2(x + 1)^2 -3 </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>State the domain and range of each relation.</p><img src="/qimages/583" />
<p>Determine the domain and range of the function <code class='latex inline'>f(x)=2(x-1)^2 - 3</code> by sketching its graph.</p>
<p>Determine the domain and range of each function.</p><p><code class='latex inline'> \displaystyle p(x)=\frac{2}{3}(x-2)^2-5 </code></p>
<p>Determine the domain and the range of the relation. Use a graph to help you if necessary.</p><p><code class='latex inline'>y = -3x^2 + 1</code></p>
<p>Determine the domain and the range of the relation. Use a graph to help you if necessary.</p><p><code class='latex inline'>y = -3x^2 + 1</code></p>
<p>The graph at the right shows <code class='latex inline'>f(x)=2(x-3)^2-1</code>.</p><img src="/qimages/4703" /><p>State the domain and range of the relation.</p>
<p>Find the domain and range of each function. <code class='latex inline'>\displaystyle f(x)=2 x^{2}+3 </code></p>
<p>Find the valid <code class='latex inline'>x</code> values for the following expressions.</p><p><code class='latex inline'>\displaystyle 6x^2 - x </code></p>
<p>State the domain and the range of the relation.</p><img src="/qimages/555" />
<p>Sketch the graph of a function whose domain is <code class='latex inline'>\{x\in R\}</code> and range is <code class='latex inline'>\{y\in \mathbb{R} \text{ given }y \leq 2\}</code></p>
<p>Graph each function.</p><p><code class='latex inline'>\displaystyle y=\frac{1}{2}(x-3)^{2}+1 </code></p>
<p>State the domain and range of the relation. Then determine whether the relation is a function, and justify your answer.</p><p><code class='latex inline'> \displaystyle y = -2(x + 1)^2 -3 </code></p>
<p>State the domain and the range of the relation.</p><img src="/qimages/555" />
<p>Consider the quadratic function <code class='latex inline'>f(x) = -(x -2)^2 + 5</code>.</p><p>State the domain and range.</p>
<p>Determine the domain and the range of the relation. Use a graph to help you if necessary.</p><p><code class='latex inline'>y = (x + 1)^2- 4</code></p>
<p>Determine the range of each relation for the domain <code class='latex inline'>\{1, 2, 3, 4, 5\}</code></p><p><code class='latex inline'>y = 2(x -2)^2 -1</code></p>
<p>What is the domain and range?</p><p><code class='latex inline'> y = (x + 1)^2 </code></p>
<p>Graph each function.</p><p><code class='latex inline'>\displaystyle y=-3\left(x^{2}+1\right) </code></p>
<p>Graph each function.</p><p><code class='latex inline'>\displaystyle y=2 x^{2}-4 </code></p>
<p>Determine the domain and the range of the relation. Use a graph to help you if necessary.</p><p><code class='latex inline'>y = (x + 1)^2- 4</code></p>
<p>State the domain and range of each relation.</p><p><code class='latex inline'>y = 2x^2 + 11</code></p>
<p>Use a graphing calculator to graph each function and determine the domain and range.</p><p><code class='latex inline'> \displaystyle f(x)=x^2-3x </code></p>
<p>A ball is thrown upward from the roof of a 25 m building. The ball reaches a height of 45 m above the ground after 2 s and hits the ground 5 s after being thrown.</p><p><strong>(a)</strong> Sketch a graph that shows the height of the ball as a function of time.</p><p><strong>(b)</strong> State the domain and range of the function.</p><p><strong>(c)</strong> Determine an equation for the function.</p>
<p>Determine the domain and range of each function.</p><p><code class='latex inline'> \displaystyle g(x)=-0.5(x+3)^2+4 </code></p>
<p>State the domain and range of the relation. Then determine whether the relation is a function. State domain and range.</p><p><code class='latex inline'>y = -5x^2</code></p>
<p>Determine whether the relation is a function, and state its domain and range. Show your work.</p><p><code class='latex inline'>x^2 = 2y + 1</code></p>
<p>Find the domain and range of each function. <code class='latex inline'>\displaystyle f(x)=(x-4)^{2}-8 </code></p>
<p>Write the domain and range of each function in set notation.</p><p><code class='latex inline'> \displaystyle f(x)=3(x+1)^2-4 </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.