5. Q5d
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<img src="/qimages/43236" />
Similar Question 2
<p>Describe and correct the error in the statement about the relation shown in the table. </p><img src="/qimages/43237" /><p>The relation is a function. The</p><p>range is <code class='latex inline'>\displaystyle 1,2,3,4 </code>, and <code class='latex inline'>\displaystyle 5 . </code></p>
Similar Question 3
<p>Determine the equations that describe the following function rules. Show your work.</p> <ul> <li>Subtract 2 from the input and then multiply by 3 to find the output.</li> </ul>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Aaron did his homework at school with a graphing calculator. He determined that the equation of the line of best fit for some data was <code class='latex inline'>y=2.63x-1.29</code>. Once he got home, he realized he had mixed up the independent and dependent variables. Write the correct equation for the relation in the form <code class='latex inline'>y=mx+b</code>.</p>
<p>Erin joins a CD club. The first 10 CDs are free, but after that she pays <code class='latex inline'>\$15.95</code> for each CD she orders.</p> <ul> <li>How much would she pay for 15 CDs?</li> </ul>
<p>John was bringing a message to the principal&#39;s office when the principal intercepted him and took the message. When a graph passes through the <code class='latex inline'>\displaystyle y </code> -axis, it has a y-intercept. What do you think a <code class='latex inline'>\displaystyle y </code> -intercept of a graph represents?</p>
<p>Determine the function that describe the following function rules. Show your work.</p> <ul> <li>The sum of the input and output is 5.</li> </ul>
<p>The circumference, <code class='latex inline'>C</code>, in kilometres, of the tropical storm in question 5 can be modelled by the function <code class='latex inline'>C(r) =2\pi r</code>.</p><p><strong>a)</strong> Graph <code class='latex inline'>C(r)</code> for <code class='latex inline'>r\in [0, 10]</code></p><p><strong>b)</strong> State the domain and range.</p><p><strong>c)</strong> Describe the similarities and differences between the graph of <code class='latex inline'>C(r)</code> and the graph of <code class='latex inline'>y = x</code>.</p>
<p>A company rents cars for <code class='latex inline'>\$50</code> per day plus <code class='latex inline'>\$0.15/km</code>.</p><p><strong>(a)</strong> Express the daily rental cost as a function of the number of kilometres travelled.</p><p><strong>(b)</strong> Determine the rental cost if you drive 472 km in one day.</p><p><strong>(c)</strong> Determine how far you can drive in a day for $80. </p>
<p>Create a linear function machine and two points that are generated by the machine. Trade points with a classmate to determine the function that generated the points.</p>
<p>Martin wants to build an additional closet in a corner of his bedroom. Because the closet will be in a corner, only two new walls need to be built. The total length of the two new walls must be 12 m. Martin wants the length of the closet to be twice as long as the width, as shown in the diagram. Show your work.</p><p> Graph <code class='latex inline'>y = f(l)</code>.</p>
<p>Shopping You are buying orange juice for <code class='latex inline'>\displaystyle \$ 4.50 </code> per container and have a gift card worth <code class='latex inline'>\displaystyle \$ 7 . </code> The function <code class='latex inline'>\displaystyle f(x)=4.50 x-7 </code> represents your total cost <code class='latex inline'>\displaystyle f(x) </code> if you buy <code class='latex inline'>\displaystyle x </code> containers of orange juice and use the gift card. How much do you pay to buy 4 containers of orange juice?</p>
<p>Erin joins a CD club. The first 10 CDs are free, but after that she pays <code class='latex inline'>\$15.95</code> for each CD she orders.</p><p>It can be modelled by <code class='latex inline'> \displaystyle Cost = 15.95x - 159.5 </code></p> <ul> <li>Erin receives her first order of CDs with a bill for <code class='latex inline'>\$31.90</code>. Create and solve an equation to determine how many she ordered.</li> </ul>
<p>Think About a Plan In a factory, a certain machine needs 10 min to warm up. It takes 15 min for the machine to run a cycle. The machine can operate for as long as <code class='latex inline'>\displaystyle 6 \mathrm{~h} </code> per day including warm-up time. Draw a graph showing the total time the machine operates during 1 day as a function of the number of cycles it runs.</p> <ul> <li><p>What domain and range are reasonable?</p></li> <li><p>Is the function a linear function?</p></li> </ul>
<p>Without graphing, tell whether the slope of a line that models each linear relationship is positive, negative, zero, or undefined. Then find the slope.</p><p>A student earns a 98 on a test for answering one question incorrectly and earns a 90 for answering five questions incorrectly.</p>
<p>You and some friends are going to a museum. Each ticket costs $4.50.</p><p>a. If <code class='latex inline'> n </code> is the number of tickets purchased, write an expression that gives the total cost of buying <code class='latex inline'> n </code> tickets.</p><p>b. Suppose the total cost for <code class='latex inline'> n </code> tickets is <code class='latex inline'> \$ 36 </code> . What is the total cost if one more ticket is purchased?</p>
<p>Describe and correct the error in the statement about the relation shown in the table. </p><img src="/qimages/43237" /><p>The relation is a function. The</p><p>range is <code class='latex inline'>\displaystyle 1,2,3,4 </code>, and <code class='latex inline'>\displaystyle 5 . </code></p>
<p>Martin wants to build an additional closet in a corner of his bedroom. Because the closet will be in a corner, only two new walls need to be built. The total length of the two new walls must be <code class='latex inline'>12</code> m. Martin wants the length of the closet to be twice as long as the width, as shown in the diagram. </p><p>What is <code class='latex inline'>l</code> as a function of <code class='latex inline'>w</code>? Show your work.</p>
<p>Without graphing, tell whether the slope of a line that models each linear relationship is positive, negative, zero, or undefined. Then find the slope.</p><p>The length of a bus route is <code class='latex inline'>\displaystyle 4 \mathrm{mi} </code> long on the sixth day and <code class='latex inline'>\displaystyle 4 \mathrm{mi} </code> long on the seventeenth day.</p>
<img src="/qimages/43242" />
<p>A promoter is holding a video dance. Tickets cost <code class='latex inline'>\$15</code> per person, and he has given away 10 free tickets to radio stations. </p><p>Find how many people bought the ticket if he made <code class='latex inline'>\$600</code>?</p><p>You may use the equation below. </p><p><code class='latex inline'> \displaystyle R = 15n - 150 </code></p>
<p>Think About a Plan The table at the right shows the number of bagels a shop gives you per &quot;baker&#39;s dozen.&quot; Write an algebraic expression that gives the rule for finding the number of bagels in any number <code class='latex inline'>\displaystyle b </code> of baker&#39;s dozens.</p> <ul> <li><p>What is the pattern of increase in the number of bagels?</p></li> <li><p>What operation can you perform on <code class='latex inline'>\displaystyle b </code> to find the number of bagels?</p><img src="/qimages/12401" /></li> </ul> <p>Bagels Baker&#39;s nom 5 \begin{tabular}{c|c}Baker&#39;s Dozens &amp; Number of Bagels \1 &amp; 13 \2 &amp; 26 \3 &amp; 39 \<code class='latex inline'>\displaystyle b </code> &amp;</p>
<p>Determine the function that describe the following function rules. Show your work.</p> <ul> <li>The input is 3 less than the output.</li> </ul>
<p>Determine the function that describe the following function rules. Show your work.</p> <ul> <li>The output is 5 less than the input multiplied by 2.</li> </ul>
<p>Describe and correct the error in the statement about the relation shown in the table. </p><img src="/qimages/43237" /><p>The relation is not a function. One</p><p>output is paired with two inputs.</p>
<p>Martin wants to build an additional closet in a corner of his bedroom. Because the closet will be in a corner, only two new walls need to be built. The total length of the two new walls must be <code class='latex inline'>12</code> m. Martin wants the length of the closet to be twice as long as the width, as shown in the diagram. </p><p>Let function <code class='latex inline'>f(l)</code> be the sum of the tenth and the width. Find the equation for <code class='latex inline'>f(l)</code>. Show your work.</p>
<p>Determine the equations that describe the following function rules. Show your work.</p> <ul> <li>Subtract 2 from the input and then multiply by 3 to find the output.</li> </ul>
<img src="/qimages/43236" />
<img src="/qimages/1554" /> <ul> <li>Which musician makes the most money at each level in the table in part b)?</li> </ul>
<p>Physics Light travels about <code class='latex inline'>\displaystyle 186,000 \mathrm{mi} / \mathrm{s} </code>. The function <code class='latex inline'>\displaystyle d(t)=186,000 t </code> gives the distance <code class='latex inline'>\displaystyle d(t) </code>, in miles, that light travels in <code class='latex inline'>\displaystyle t </code> seconds. How far does light travel in 30 s?</p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.