4. Q4d
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Solve each inequality. Graph the solution set on a number line.</p><p><code class='latex inline'>\displaystyle |c| \geq 8 </code></p>
Similar Question 2
<p>Solve each of the following, <code class='latex inline'>x\in\mathbb{R}</code>. Express your answers using both set and interval notation.</p><p><code class='latex inline'>|2x + 2|<8</code></p>
Similar Question 3
<p>The inequality <code class='latex inline'>|2x-1|<7</code> can be expressed as a double inequality.</p><p>Depict the inequality graphically.</p><p>Use your graph to solve the inequality.</p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Solve each inequality. Graph the solution set on a number line.</p><p><code class='latex inline'>\displaystyle |z| < 6 </code></p>
<p>Copy and complete the table.</p><img src="/qimages/43150" />
<p>Solve each inequality. Graph the solution set on a number line.</p><p><code class='latex inline'>\displaystyle |-5 j-4| \geq 12 </code></p>
<p>Solve each inequality. Graph the solution set on a number line.</p><p><code class='latex inline'>\displaystyle |3 v+5| > 14 </code></p>
<p>Which number line corresponds with the absolute value notation below?</p><p><code class='latex inline'> |x| \geq 16 </code></p><p>Show your work.</p>
<p>Solve each inequality. Graph the solution set on a number line.</p><p><code class='latex inline'>\displaystyle |-6 h| > 90 </code></p>
<p>Which number line corresponds with the absolute value notation below?</p><p><code class='latex inline'> |x| > - 7 </code></p><p>Show your work.</p>
<p> Solve the inequality. Express the solution using interval notation and graph the solution set.</p><p><code class='latex inline'>\displaystyle |2x - 3| \leq 0.4 </code></p>
<p>Which number line corresponds with the absolute value notation below?</p><p><code class='latex inline'> |x|<8 </code></p><p>Show your work.</p>
<p>Solve each inequality. Graph the solution set on a number line.</p><p><code class='latex inline'>\displaystyle \frac{|5 f-2|}{6} > 4 </code></p>
<p>Solve each inequality. Graph the solution set on a number line.</p><p><code class='latex inline'>\displaystyle |8 t+3| \leq 4 </code></p>
<p>Solve each inequality. Graph the solution set on a number line.</p><p><code class='latex inline'>\displaystyle 3|2 z-4|-6 > 12 </code></p>
<p>Solve each of the following, <code class='latex inline'>x\in\mathbb{R}</code>. Express your answers using both set and interval notation.</p><p><code class='latex inline'>|2x + 2|<8</code></p>
<p> Solve the inequality. Express the solution using interval notation and graph the solution set.</p><p><code class='latex inline'>\displaystyle |x + 6| < 0.001 </code></p>
<p>Find the equation that allows for the conversion of Celsius to Fahrenheit by solving the relation <code class='latex inline'> \displaystyle C = \frac{5}{9}(F - 32) </code> for F.</p>
<p> Solve the inequality. Express the solution using interval notation and graph the solution set.</p><p><code class='latex inline'>\displaystyle 8 - |2x - 1| \geq 6 </code></p>
<p>The inequality <code class='latex inline'>|2x-1|<7</code> can be expressed as a double inequality.</p><p>Depict the inequality graphically.</p><p>Use your graph to solve the inequality.</p>
<p>For what values of <code class='latex inline'>C</code> is the Fahrenheit temperature greater than the equivalent Celsius temperature?</p><p><code class='latex inline'>\displaystyle C = \frac{5}{9}(F- 32) </code></p>
<p> Solve the inequality. Express the solution using interval notation and graph the solution set.</p><p><code class='latex inline'>\displaystyle |\frac{x - 2}{3}| < 2 </code></p>
<p> Solve the inequality. Express the solution using interval notation and graph the solution set.</p><p>(a) <code class='latex inline'>\displaystyle |x| \leq 4 </code></p><p>(b) <code class='latex inline'>\displaystyle |3x| < 15 </code></p><p>(c) <code class='latex inline'>\displaystyle |2x| \leq 7 </code></p><p>(d) <code class='latex inline'>\displaystyle \frac{1}{2}|x| \geq 1 </code></p>
<p>Solve each inequality. Graph the solution set on a number line.</p><p><code class='latex inline'>\displaystyle |c| \geq 8 </code></p>
<p>Copy and complete the table.</p><img src="/qimages/43149" />
<p>Solve each inequality. Graph the solution set on a number line.</p><p><code class='latex inline'>\displaystyle |-4 k| > 16 </code></p>
<p>Which number line corresponds with the absolute value notation below?</p><p><code class='latex inline'> |x| \leq - 4 </code></p><p>Show your work.</p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.