10. Q10b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Determine the domain and range.</p><p><code class='latex inline'> \displaystyle f(x)=\sqrt{3-x}+2 </code></p>
Similar Question 2
<p>Determine the domain and range of each function.</p><p><code class='latex inline'> \displaystyle h(x)=\sqrt{x-1} </code></p>
Similar Question 3
<p>Given <code class='latex inline'>f(x) =\sqrt{x}</code>, what is the domain and range for the function:</p><p><code class='latex inline'>h(x) = 2f(x-1) + 4</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Given <code class='latex inline'>f(x) =\sqrt{x}</code>, what is the domain and range for the function:</p><p><code class='latex inline'>k(x) = f(-x) + 1</code></p>
<p>Given <code class='latex inline'>f(x) =\sqrt{x}</code>, what is the domain and range for the function:</p><p><code class='latex inline'>g(x) = f(x -2)</code></p>
<p>Determine the domain and the range of the relation. Use a graph to help you if necessary.</p><p><code class='latex inline'>y = \sqrt{2x + 1}</code></p>
<p> Find the domain of the expression.</p><p><code class='latex inline'> \displaystyle \sqrt{x + 3} </code></p>
<p>Write the domain and range of each function in set notation.</p><p><code class='latex inline'> \displaystyle f(x)=\sqrt{x-2} </code></p>
<p>Determine the domain and range.</p><p><code class='latex inline'> \displaystyle f(x)=\sqrt{3-x}+2 </code></p>
<p>Determine the domain and range of each function.</p><p><code class='latex inline'> \displaystyle h(x)=\sqrt{x-1} </code></p>
<p>Given <code class='latex inline'>f(x) =\sqrt{x}</code>, what is the domain and range for the function:</p><p><code class='latex inline'>h(x) = 2f(x-1) + 4</code></p>
<p>Determine the domain and range of each function.</p><p><code class='latex inline'> \displaystyle r(x)=\sqrt{5-x} </code></p>
<p>Given f(x) = \sqrt(x), find the domain and range for below.</p><p><code class='latex inline'>\displaystyle g(x) = f(x-2) </code></p>
<p>Given <code class='latex inline'>f(x) =\sqrt{x}</code>, what is the domain and range for the function:</p><p><code class='latex inline'>h(x) = 2f(x-1) + 4</code></p>
<p>Determine the domain and the range of the relation. Use a graph to help you if necessary.</p><p><code class='latex inline'>y = \sqrt{2x + 1}</code></p>
<p>Given <code class='latex inline'>f(x) =\sqrt{x}</code>, what is the domain and range for the function:</p><p><code class='latex inline'>J(x) = 3f(2(x-5))-3</code></p>
<p>Find the valid <code class='latex inline'>x</code> values for the following expressions.</p><p><code class='latex inline'>\displaystyle 3 + \sqrt{3x + 2} </code></p>
<p>On Earth, the time, <code class='latex inline'>t</code>, in seconds, taken for an object to fall from a height, <code class='latex inline'>h</code> , in metres, to the ground is given by the formula <code class='latex inline'>t(h) = \sqrt{\frac{h}{4.9}}</code>. On the moon, the formula changes to <code class='latex inline'>t(h)= \sqrt{\frac{h}{1.8}}</code>.</p><p>Determine the domain and the range of each relation.</p>
<p>State the domain and range of each relation.</p><img src="/qimages/585" />
<p>Rivers located near an ocean experience a large wave called a tidal bore due to the tides. The speed, V, in kilometres per hour, of the tidal bore in a river is a function of the depth, d, in metres, of the river. The function is <code class='latex inline'>v(d) = 11.27\sqrt{d}</code></p><p>Determine the domain and the range of this function.</p>
<p>Find the valid <code class='latex inline'>x</code> values for the following expressions.</p><p><code class='latex inline'>\displaystyle \sqrt{2x - 1} </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.