14. Q14
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>A student writes, &quot;The inverse of of <code class='latex inline'>y = -\sqrt{x + 2}</code> is <code class='latex inline'>y = x^2 -2</code> &quot;</p><p>Is this true? Explain.</p>
Similar Question 2
<p>A function <code class='latex inline'>g</code> is defined by <code class='latex inline'>g(x) = 4(x - 3)^2 + 1</code></p><p>Suppose that the domain of <code class='latex inline'>g(x)</code> is <code class='latex inline'>\{x \in \mathbb{R} | 2 \leq x \leq 5\}</code>. Is the inverse a function? Justify your answer. </p>
Similar Question 3
<p>A function <code class='latex inline'>g</code> is defined by <code class='latex inline'>g(x) = 4(x - 3)^2 + 1</code></p><p>Suppose that the domain of <code class='latex inline'>g(x)</code> is <code class='latex inline'>\{x \in \mathbb{R} | 2 \leq x \leq 5\}</code>. Is the inverse a function? Justify your answer. </p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>A function <code class='latex inline'>g</code> is defined by <code class='latex inline'>g(x) = 4(x - 3)^2 + 1</code></p><p>Suppose that the domain of <code class='latex inline'>g(x)</code> is <code class='latex inline'>\{x \in \mathbb{R} | 2 \leq x \leq 5\}</code>. Is the inverse a function? Justify your answer. </p>
<p>A function <code class='latex inline'>g</code> is defined by <code class='latex inline'>g(x) = 4(x - 3)^2 + 1</code> and its inverse is <code class='latex inline'>g^{-1}(x)=\pm \sqrt \dfrac{x-1}{4} +3</code>.</p><p>State restrictions on the domain or range of <code class='latex inline'>g</code> so that its inverse is a function.</p>
<p>A student writes, &quot;The inverse of of <code class='latex inline'>y = -\sqrt{x + 2}</code> is <code class='latex inline'>y = x^2 -2</code> &quot;</p><p>Is this true? Explain.</p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.