2. Q2c
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Each of the following ordered pairs is a point on a function. What is the corresponding point on the inverse relation?</p><p>a) <code class='latex inline'>(2,5)</code></p><p>b) <code class='latex inline'>(-5,-6)</code></p><p>c) <code class='latex inline'>(4,-8)</code></p><p>d) <code class='latex inline'>f(1)=2</code></p><p>e) <code class='latex inline'>g(-3)=0</code></p><p>f) <code class='latex inline'>h(0)=7</code></p>
Similar Question 2
<p>Write the inverse of the function. Then state the domain and range of the function and its inverse.</p><p><code class='latex inline'> \{(1, 5), (4, 2), (5, -3), (7, 0)\} </code></p>
Similar Question 3
<p>Sketch the inverse of the function and state the domain and range of the function and its inverse.</p><img src="/qimages/4085" />
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Identify the appropriate values for <code class='latex inline'>a, k, c</code>, and <code class='latex inline'>d</code> in <code class='latex inline'>y = af(k(x-d))+c</code> to describe each set of transformations below.</p><p>horizontal stretch by a factor of <code class='latex inline'>2</code>, vertical translation <code class='latex inline'>3</code> units up, reflection in the x-axis.</p>
<p>Each of the following ordered pairs is a point on a function. What is the corresponding point on the inverse relation?</p><p>a) <code class='latex inline'>(2,5)</code></p><p>b) <code class='latex inline'>(-5,-6)</code></p><p>c) <code class='latex inline'>(4,-8)</code></p><p>d) <code class='latex inline'>f(1)=2</code></p><p>e) <code class='latex inline'>g(-3)=0</code></p><p>f) <code class='latex inline'>h(0)=7</code></p>
<p>Write the inverse of the function. Then state the domain and range of the function and its inverse.</p><p><code class='latex inline'> \{(3, 5), (4, 0), (5, -5), (6, -10)\} </code></p>
<p>Determine the inverse relation for each set of ordered pairs. </p><p><code class='latex inline'>(-2,3),(0,4),(2,5),(4,6)</code></p>
<p>Write the inverse of the function. Then state the domain and range of the function and its inverse.</p><img src="/qimages/4083" />
<p>Given the domain and range of a function, what is the domain and range of the inverse relation?</p><p><code class='latex inline'>D = \{x\in \mathbb{R} \vert x < -2\}, R = \{y\in \mathbb{R} \vert -5 < y < 10\}</code></p>
<p>Sketch the inverse of the function and state the domain and range of the function and its inverse.</p><img src="/qimages/4111" />
<p>Write the inverse of the function. Then state the domain and range of the function and its inverse.</p><p><code class='latex inline'> \{(1, 5), (4, 2), (5, -3), (7, 0)\} </code></p>
<p>Sketch the inverse of the function and state the domain and range of the function and its inverse.</p><img src="/qimages/4085" />
<p>Given the domain and range of a function, what is the domain and range of the inverse relation?</p><p><code class='latex inline'>D = \{x\in \mathbb{R} \vert x \geq -5\}, R = \{y\in \mathbb{R} \vert y < 2\}</code></p>
<p> Graph the function <code class='latex inline'>f = \{ (0, 0), (1, 1), (2, 4), (3, 9) \}</code></p><p><strong>(a)</strong> On the same grid, graph the inverse of f and the line <code class='latex inline'>y = x</code></p><p><strong>(b)</strong> Is the inverse a function?</p>
<p>For the graph, identify the points that are common to the function and its inverse. Is the inverse relations a function?</p><img src="/qimages/578" />
<p>What are the appropriate values for <code class='latex inline'>a, k, c</code>, and <code class='latex inline'>d</code> in <code class='latex inline'>y = af(k(x-d))+c</code> to describe each set of transformations below?</p><img src="/qimages/105" />
How did you do?
Found an error or missing video? We'll update it within the hour! 👉
Save videos to My Cheatsheet for later, for easy studying.