2. Q2b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p> Simplify using Change of Bases Law.</p><p><code class='latex inline'> \displaystyle (\log_{2}5)(\log_{5}7) </code></p>
Similar Question 2
<p>Use the Laws of Logarithms to combine the expression.</p><p><code class='latex inline'> \displaystyle \frac{1}{3}\log(2x + 1) + \frac{1}{2}[\log(x - 4) - \log(x^4 - x^2 - 1)] </code></p>
Similar Question 3
<p>Use the Laws of Logarithms to combine the expression.</p><p><code class='latex inline'> \displaystyle \log_{2}A + \log_{2}B - 2\log_{2}C </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Use the Laws of Logarithms to combine the expression.</p><p><code class='latex inline'> \displaystyle 2(\log_{5}x + 2\log_{5}y) - 3\log_{5}z </code></p>
<p>Simplify the expression.</p><p><code class='latex inline'> \displaystyle \log 4 + \log 25 </code></p>
<p>Use the Laws of Logarithms to combine the expression.</p><p><code class='latex inline'> \displaystyle \frac{1}{3}\log(2x + 1) + \frac{1}{2}[\log(x - 4) - \log(x^4 - x^2 - 1)] </code></p>
<p>Express as a single logarithm.</p><p><code class='latex inline'>\displaystyle \frac{1}{2}\log 17 -\log 5 </code></p>
<p>Express as a single logarithm.</p><p><code class='latex inline'>\displaystyle \log_35 + \log_3 8 + \log_315 </code></p>
<p>Use the Laws of Logarithms to combine the expression.</p><p><code class='latex inline'> \displaystyle \log_{3}5 + 5\log_{3}2 </code></p>
<p> Simplify using Change of Bases Law.</p><p><code class='latex inline'> \displaystyle (\log_{2}5)(\log_{5}7) </code></p>
<p>Express as a single logarithm.</p><p><code class='latex inline'>\displaystyle \log(a+b) + \log a^3 </code></p>
<p>Express as a single logarithm.</p><p><code class='latex inline'>\displaystyle 4\log x - 3\log y </code></p>
<p>Express each of the following as a logarithm of a product of quotient.</p><p><code class='latex inline'> \displaystyle \log x - \log y </code></p>
<p>Express as a single logarithm.</p><p><code class='latex inline'>\displaystyle \log_48-\log_410 + \log_43 </code></p>
<p> Simplify using Change of Bases Law.</p><p><code class='latex inline'> \displaystyle (\log_{3}15)(\log_{5}27) </code></p>
<p>Express as a single logarithm.</p><p><code class='latex inline'>\displaystyle \log(x+ y)- \log(x-y) </code></p>
<p>Use the Laws of Logarithms to combine the expression.</p><p><code class='latex inline'> \displaystyle \log_{2}A + \log_{2}B - 2\log_{2}C </code></p>
<p>Use the Laws of Logarithms to combine the expression.</p><p><code class='latex inline'> \displaystyle \log_{a}b + c\log_{a}d - r\log_{a}s </code></p>
<p>Express as a single logarithm.</p><p><code class='latex inline'>\displaystyle \log_219+\log_24 -\log_231 </code></p>
<p>Use the Laws of Logarithms to combine the expression.</p><p><code class='latex inline'> \displaystyle \log_{5}(x^2 - 1) - \log_{5}(x - 1) </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.