1. Q1b
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Solve. Round your answers to three decimal places.</p><p><code class='latex inline'> \displaystyle 30(5^x) = 150</code></p>
Similar Question 2
<p>Solve.</p><p><code class='latex inline'> \displaystyle 225(1.05)^x = 450</code></p>
Similar Question 3
<p>Solve for <code class='latex inline'>x</code>.</p><p><code class='latex inline'> \displaystyle 2^{x^2} = 32(2^{4x})</code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Solve.</p><p><code class='latex inline'> \displaystyle 2^{2x + 2}+ 7 = 71</code></p>
<p>Solve by rewriting in exponential form.</p><p><code class='latex inline'> \displaystyle x = \log_3(\frac{1}{\sqrt{3}})</code></p>
<p>Solve by rewriting in exponential form.</p><p><code class='latex inline'> \displaystyle x = \log_3243</code></p>
<p>Solve by rewriting in exponential form.</p><p><code class='latex inline'> \displaystyle x =\log_55\sqrt{3}</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle x = \log_553.2</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 3^{x + 2} + 3^x = 270</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 2^{x + 2} + 2^x = 320</code></p>
<p>Solve <code class='latex inline'>3^{2x} -5(3^x) = -6</code></p>
<p>Solve. Round your answers to three decimal places.</p><p><code class='latex inline'> \displaystyle 6^x = 231</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 3^{x + 2}+ 3^x = 30</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 4^{x + 3}-4^x = 63</code></p>
<p>Solve by rewriting in exponential form.</p><p><code class='latex inline'> \displaystyle x = \log_6216</code></p>
<p>Solve. Round your answers to three decimal places.</p><p><code class='latex inline'> \displaystyle 5^{1 -x} = 10</code></p>
<p>If <code class='latex inline'>\log_a2 = \log_b8</code>, then what is <code class='latex inline'>a^3</code> equal to?</p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 2^{3x} = \frac{1}{2}</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 49^{x - 1} = 7\sqrt{7}</code></p>
<p>Solve for <code class='latex inline'>x</code>: </p><p><code class='latex inline'> \displaystyle (\log x)^{\log(\log x)} = 10000 </code></p>
<p>Solve for <code class='latex inline'>x</code>. Leave your answer in exact form.</p><p><code class='latex inline'> \displaystyle 3(2)^x = (4)^{x +1}</code></p>
<p>Solve. Round your answers to three decimal places.</p><p><code class='latex inline'> \displaystyle 6^{\frac{x}{3}} =30</code></p>
<p>Determine the point of intersection for the graphs of <code class='latex inline'>y = 3(5^{2x})</code> and <code class='latex inline'>y = 6(4^{3x})</code>. Round your answer to three decimal places.</p>
<p>Solve. Round your answers to three decimal places.</p><p><code class='latex inline'> \displaystyle 210 = 40(1.5^x)</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 8^{x - 1} = \sqrt[3]{16}</code></p>
<p>The formula to calculate the mass, <code class='latex inline'>M(t)</code>, remaining from an original sample of radioactive material with mass <code class='latex inline'>P</code>, is determined using the formula <code class='latex inline'>M(t) = P(\frac{1}{2})^{\frac{t}{h}}</code>, where <code class='latex inline'>t</code> is time and <code class='latex inline'>h</code> is the half-life of the substance. The half-life of a radioactive substance is 8 h. How long will it take for a 300 g sample to decay to each mass?</p> <ul> <li>200 g</li> </ul>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 2^{x + 2}-2^x = 96</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 2^{3x- 4} = 0.25</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 5^{t - 1}= 3.92</code></p>
<p>Solve for <code class='latex inline'>x</code>: </p><p><code class='latex inline'> \displaystyle \log_2(3x - 2)+\log_2(x+ 2)= 1 + \frac{\log_x(x+ 6)}{\log_x2} </code></p>
<p>A bacteria culture doubles every 15 min. How long will it take for a culture of 20 bacteria to grow to a population of 163 840?</p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle (\frac{1}{4})^{x + 4} = \sqrt{8}</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 10^{x + 1}-10^x = 9000</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 4^{x + 1} + 4^x = 160</code></p>
<p>Solve for <code class='latex inline'>x</code>. Leave your answer in exact form.</p><p> <code class='latex inline'> \displaystyle (2^x)^x = 10</code></p>
<p>Solve each equation. Leave answers in exact form.</p><p><code class='latex inline'>\displaystyle 7^{2x + 1} =4^{x -2} </code></p>
<p>Solve by rewriting in exponential form.</p><p><code class='latex inline'> \displaystyle x = \log_2\sqrt[5]{8}</code></p>
<p>Solve. Round your answers to three decimal places.</p><p><code class='latex inline'> \displaystyle 2^x = 17 </code></p>
<p>Solve for <code class='latex inline'>x</code>.</p><p><code class='latex inline'> \displaystyle 3^{x^2 + 20} = (\frac{1}{27})^{3x}</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 9^{2x + 1} = 81(27^x)</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 5^x = 625 </code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 36^{2x +4} =(\sqrt{1296})^x</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 4^{2x} =2^{5 - x}</code></p>
<p>Solve by rewriting in exponential form.</p><p><code class='latex inline'> \displaystyle \log_2(\frac{1}{4})</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 9^{x + 1} =27^{2x - 3}</code></p>
<p>Solve. Round your answers to three decimal places.</p><p><code class='latex inline'> \displaystyle 30(5^x) = 150</code></p>
<p>Solve for <code class='latex inline'>x</code>.</p><p><code class='latex inline'> \displaystyle 2^{x^2} = 32(2^{4x})</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle x = \log_325</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 4^{2x} = \frac{1}{16}</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 4^{2x} = 5^{2x - 1}</code></p>
<p>Solve for <code class='latex inline'>x</code>, to two decimal places.</p><p><code class='latex inline'> \displaystyle 6^{3x} = 4^{2x - 3}</code></p>
<p>Solve for <code class='latex inline'>x</code>, to two decimal places.</p><p><code class='latex inline'> \displaystyle (1.2)^x =(2.8)^{x +4}</code></p>
<p>Solve for <code class='latex inline'>x</code>.</p><p><code class='latex inline'> \displaystyle 2\times 3^{x} =7 \times 5^x</code></p>
<p>Solve.</p><p><code class='latex inline'> \displaystyle 225(1.05)^x = 450</code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.