11. Q11e
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Fully factor each polynomial by applying one or more strategies.</p><p><code class='latex inline'>\displaystyle 3 k^{4}-48 </code></p>
Similar Question 2
<p>Evaluate the limit, if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{t \to 1} \frac{t^4- 1}{t^3 - 1}</code></p>
Similar Question 3
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to -2} \frac{x^4 - 16}{x + 2} </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to -2} \frac{x^4 - 16}{x + 2} </code></p>
<p>Evaluate the limit, if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{t \to 1} \frac{t^4- 1}{t^3 - 1}</code></p>
<p>Fully factor each polynomial by applying one or more strategies.</p><p><code class='latex inline'>\displaystyle 3 k^{4}-48 </code></p>
<p>Fully factor each polynomial by applying one or more strategies.</p><p><code class='latex inline'>\displaystyle u^{4}-625 </code></p>
<p>Evaluate the limit by using the limit laws.</p><p><code class='latex inline'>\displaystyle \lim_{h \to 0}\frac{(1 + h)^4 - 1}{h}</code></p>
How did you do?
I failed
I think I failed
I think I got it
I got it
Another question?
Found an error or missing video? We'll update it within the hour! 👉
Report it
Save videos to My Cheatsheet for later, for easy studying.