11. Q11f
Save videos to My Cheatsheet for later, for easy studying.
Video Solution
Q1
Q2
Q3
L1
L2
L3
Similar Question 1
<p>Evaluate each limit, if it exists.</p><p> <code class='latex inline'> \displaystyle \lim_{x\to -4} \frac{3x^2 + 11x -4}{x^2 + 3x - 4} </code></p>
Similar Question 2
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to -5} \frac{x^2 + 4x - 5}{25-x^2} </code></p>
Similar Question 3
<p>Evaluate the limit by using the limit laws. </p><p><code class='latex inline'>\lim_{x \to 1}\frac{x^2 + x - 2}{x^2 - 3x + 2} </code></p>
Similar Questions
Learning Path
L1 Quick Intro to Factoring Trinomial with Leading a
L2 Introduction to Factoring ax^2+bx+c
L3 Factoring ax^2+bx+c, ex1
Now You Try
<p>Evaluate the limit, if the limit exists. </p><p><code class='latex inline'>\lim\limits_{x\to -4} \displaystyle\frac{x^2+12x+32}{x+4}</code></p>
<p>Evaluate the limit by using the limit laws. </p><p><code class='latex inline'>\lim_{x \to 1}\frac{x^2 + x - 2}{x^2 - 3x + 2} </code></p>
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to 0} \frac{-2x}{x^2 -4x} </code></p>
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to 1} \frac{x^2 -1}{-x^2-3x + 3} </code></p>
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to 3} \frac{2x^2-5x -3}{x^2 -x - 6} </code></p>
<p>Evaluate the limit, if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{x \to -3} \frac{x^2 +3x}{x^2 - x -12}</code></p>
<p>Evaluate the limit, if it exists, using any appropriate technique.</p><p><code class='latex inline'>\displaystyle \lim_{x \to -1} \frac{x^2 + x}{x + 1}</code></p>
<p>Show that <code class='latex inline'>\displaystyle \lim_{t\to 1} \frac{t^3-t^2-5t}{6-t^2} = -1</code></p>
<p>Evaluate the limit, if it exists, using any appropriate technique.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 1} [ (\frac{1}{x-1})(\frac{1}{x + 3} - \frac{2}{3x + 5})] </code></p>
<p>Evaluate each limit, if it exists.</p><p> <code class='latex inline'> \displaystyle \lim_{x\to -4} \frac{3x^2 + 11x -4}{x^2 + 3x - 4} </code></p>
<p>Evaluate the limit of each indeterminate quotient.</p><p> <code class='latex inline'>\displaystyle \lim_{x \to -1} \frac{2x^2+5x + 3}{x + 1}</code></p>
<p>Evaluate the limit, if it exists, using any appropriate technique.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 4} \frac{x^2 -16}{x^2-5x + 6}</code></p>
<p>Evaluate the limit by using the limit laws. </p><p><code class='latex inline'>\displaystyle \lim_{x \to -2}\frac{x + 2}{x^2 - x - 6}</code></p>
<p>Explain why the given limit does not exist. </p><p><code class='latex inline'>\displaystyle \lim_{x\to 2} \displaystyle\frac{x^2-4}{x^2-4x+4}</code></p>
<p>Evaluate the limit if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 0} \frac{9x}{2x^2 -5x} </code></p>
<p>Evaluate the limit, if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 5} \frac{x^2 -6x + 5}{x - 5}</code></p>
<p>Evaluate the limit if it exists.</p><p><code class='latex inline'>\displaystyle \lim_{x \to 5} \frac{x^2 -3x - 10}{x - 5} </code></p>
<p>Evaluate each limit, if it exists.</p><p><code class='latex inline'> \displaystyle \lim_{x\to -5} \frac{x^2 + 4x - 5}{25-x^2} </code></p>
How did you do?
Found an error or missing video? We'll update it within the hour! ðŸ‘‰
Save videos to My Cheatsheet for later, for easy studying.